Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
3-Fucosyllactose (3-FL) is one of the major fucosylated oligosaccharides in human milk. Along with 2'-fucosyllactose (2'-FL), it is known for its prebiotic, immunomodulator, neonatal brain development, and antimicrobial function. Whereas the biological production of 2'-FL has been widely studied and made significant progress over the years, the biological production of 3-FL has been hampered by the low activity and insoluble expression of α-1,3-fucosyltransferase (FutA), relatively low abundance in human milk oligosaccharides compared with 2'-FL, and lower digestibility of 3-FL than 2'-FL by bifidobacteria. In this study, we report the gram-scale production of 3-FL using E. coli BL21(DE3). We previously generated the FutA quadruple mutant (mFutA) with four site mutations at S46F, A128N, H129E, Y132I, and its specific activity was increased by nearly 15 times compared with that of wild-type FutA owing to the increase in k and the decrease in K . We overexpressed mFutA in its maximum expression level, which was achieved by the optimization of yeast extract concentration in culture media. We also overexpressed L-fucokinase/GDP- L-fucose pyrophosphorylase to increase the supply of GDP-fucose in the cytoplasm. To increase the mass of recombinant whole-cell catalysts, the host E. coli BW25113 was switched to E. coli BL21(DE3) because of the lower acetate accumulation of E. coli BL21(DE3) than that of E. coli BW25113. Finally, the lactose operon was modified by partially deleting the sequence of LacZ (lacZΔm15) for better utilization of D-lactose. Production using the lacZΔm15 mutant yielded 3-FL concentration of 4.6 g/L with the productivity of 0.076 g·L ·hr and the specific 3-FL yield of 0.5 g/g dry cell weight.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.27160 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!