The trap-state density in perovskite films largely determines the photovoltaic performance of perovskite solar cells (PSCs). Increasing the crystal grain size in perovskite films is an effective method to reduce the trap-state density. Here, we have added NHSCN into perovskite precursor solution to obtain perovskite films with an increased crystal grain size. The perovskite with increased crystal grain size shows a much lower trap-state density compared with reference perovskite films, resulting in an improved photovoltaic performance in PSCs. The champion photovoltaic device has achieved a power conversion efficiency of 19.36%. The proposed method may also impact other optoelectronic devices based on perovskite films.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718693 | PMC |
http://dx.doi.org/10.1186/s11671-019-3134-4 | DOI Listing |
ACS Nano
January 2025
Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
Understanding energy transport in semiconductors is critical for the design of electronic and optoelectronic devices. Semiconductor material properties, such as charge carrier mobility or diffusion length, are commonly measured in bulk crystals and determined using models that describe transport behavior in homogeneous media, where structural boundary effects are minimal. However, most emerging semiconductors exhibit nano- and microscale heterogeneity.
View Article and Find Full Text PDFCommun Mater
January 2025
Silicon Austria Labs GmbH, Graz, Austria.
Perovskites at the crossover between ferroelectric and relaxor are often used to realize dielectric capacitors with high energy and power density and simultaneously good efficiency. Lead-free BiNaTiO is gaining importance in showing an alternative to lead-based devices. Here we show that ()BiNaTiO - BaZr Ti O (best: 0.
View Article and Find Full Text PDFScience
January 2025
Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, P. R. China.
Formamidinium lead triiodide (FAPbI) is considered the most promising composition for high-performing single-junction solar cells. However, nonalloyed α-FAPbI is metastable with respect to the photoinactive δ-phase. We have developed a kinetic modulation strategy to fabricate high-quality and stable nonalloyed α-FAPbI films, assisted by cogenetic volatile iodine intercalation and decalation.
View Article and Find Full Text PDFNano Lett
January 2025
School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.
Inorganic CsPbI perovskite has emerged as a promising emitter for deep-red light-emitting diodes (LEDs) due to its intrinsic thermal stability and suitable bandgap. However, uncontrollable CsPbI crystallization induced by an alkaline zinc oxide (ZnO) substrate in bulk film-based LEDs leads to insufficient external quantum efficiencies (EQEs) at high brightness, leaving obstacles in commercialization progress. Herein, we demonstrate an effective acidic engineering strategy with wide applicability to modify the surface property of ZnO and regulate CsPbI crystallization.
View Article and Find Full Text PDFACS Energy Lett
January 2025
Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
Antisolvent treatment is used in the fabrication of perovskite films to control grain growth during spin coating. We study widely incorporated aromatic hydrocarbons and aprotic ethers, discussing the origin of their performance differences in 2D/3D Sn perovskite (PEAFASnI) solar cells. Among the antisolvents that we screen, diisopropyl ether yields the highest power conversion efficiency in solar cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!