Ferroelastic switching in ferroelectric/multiferroic oxides plays a crucial role in determining their dielectric, piezoelectric, and magnetoelectric properties. In thin films of these materials, however, substrate clamping is generally thought to limit the electric-field- or mechanical-force-driven responses to the local scale. Here, we report mechanical-force-induced large-area, non-local, collective ferroelastic domain switching in PbTiO epitaxial thin films by tuning the misfit-strain to be near a phase boundary wherein c/a and a/a nanodomains coexist. Phenomenological models suggest that the collective, c-a-c-a ferroelastic switching arises from the small potential barrier between the degenerate domain structures, and the large anisotropy of a and c domains, which collectively generates much larger response and large-area domain propagation. Large-area, non-local response under small stimuli, unlike traditional local response to external field, provides an opportunity of unique response to local stimuli, which has potential for use in high-sensitivity pressure sensors and switches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718682 | PMC |
http://dx.doi.org/10.1038/s41467-019-11825-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!