A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Harnessing T-cell activity against prostate cancer: A therapeutic microparticulate oral cancer vaccine. | LitMetric

Harnessing T-cell activity against prostate cancer: A therapeutic microparticulate oral cancer vaccine.

Vaccine

Mercer University, Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, Atlanta, GA 30341, USA. Electronic address:

Published: September 2019

Prostate Cancer specific immunotherapy in combination with immune stimulating adjuvants may serve as a viable strategy for facilitating tumor regression and preventing recurrence. In this study, an oral microparticulate vaccine encapsulating tumor associated antigens (TAA) extracted from a murine prostate cancer cell line, TRAMP-C2, was formulated with the help of a spray dryer. Microparticles were characterized in vitro to determine their physicochemical properties and antigenicity. Formulated microparticles had an average size of 4.92 ± 0.5 μm with a zeta potential of 7.92 ± 1.2 mV. In order to test our formulation for its ability to demonstrate adequate antigen presentation and co-stimulation, microparticles were tested in vitro on murine dendritic cells. In vitro biological characterization demonstrated the activation of specific immune system markers such as CD80/86, CD40, MHC-I and MHC-II. Following in vitro characterization, in vivo anti-tumor efficacy of the oral microparticulate vaccine was evaluated in C57BL/6 male mice. Combination therapy of vaccine microparticles with cyclophosphamide and granulocyte macrophage-colony stimulating factor (GM-CSF) demonstrated a five-fold reduction in tumor volume as compared to non-vaccinated mice. At the cellular level, cyclophosphamide and GM-CSF augmented the vaccine response as indicated by the reduced tumor volume and significant elevation of cytotoxic T-cell (CTL) CD8+ and (T-helper) CD4+ T-cells compared to mice receiving vaccine microparticles alone. Furthermore, our studies indicate a significant reduction in T-regulatory cells (T-regs) in mice receiving vaccine along with GM-CSF and cyclophosphamide, one of the immune escape mechanisms linked to tumor growth and progression. Thus, oral microparticulate vaccines have the potential to trigger a robust anti-tumor cellular response, and in combination with clinically relevant agents, significantly resist tumor growth and progression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2019.08.033DOI Listing

Publication Analysis

Top Keywords

prostate cancer
12
oral microparticulate
12
microparticulate vaccine
8
vaccine microparticles
8
tumor volume
8
mice receiving
8
receiving vaccine
8
tumor growth
8
growth progression
8
vaccine
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!