A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Advantages and pitfalls of noninvasive electrocardiographic imaging. | LitMetric

Advantages and pitfalls of noninvasive electrocardiographic imaging.

J Electrocardiol

IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-33600 Pessac, Bordeaux, France; Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000 Bordeaux, France.

Published: May 2021

AI Article Synopsis

  • The study evaluates the effectiveness of Electrocardiographic Imaging (ECGI) for mapping heart activity and recovery, specifically in a controlled pig heart model.
  • High visual consistency was found between ECGI data and recorded heart activation and repolarization maps, although the reconstruction of repolarization times was less accurate than activation times.
  • Despite some misplacement of breakthrough sites and inaccuracies in conduction block, ECGI was still able to accurately identify key areas of abnormal repolarization, showing its potential as a valuable clinical tool.

Article Abstract

Background: With increasing clinical use of Electrocardiographic Imaging (ECGI), it is imperative to understand the limits of this technique. The objective of this study is to evaluate a potential-based ECGI approach for activation and repolarization mapping in sinus rhythm.

Method: Langendorff-perfused pig hearts were suspended in a human-shaped torso tank. Electrograms were recorded with a 108-electrode sock and ECGs with 256 electrodes embedded in the tank surface. Left bundle branch block (LBBB) was developed in 4 hearts through ablation, and repolarization abnormalities in another 4 hearts through regional perfusion of dofetilide and pinacidil. Electrograms were noninvasively reconstructed and reconstructed activation and repolarization features were compared to those recorded.

Results: Visual consistency between ECGI and recorded activation and repolarization maps was high. While reconstructed repolarization times showed significantly more error than activation times quantitatively, patterns were reconstructed with a similar level of accuracy. The number of epicardial breakthrough sites was underestimated by ECGI and these were misplaced (>20 mm) in location. Likewise, ECGI reconstructed activation maps demonstrated artificial lines of block resulting from a W-shaped QRS waveform that were not present in recorded maps. Nevertheless, ECGI allowed identification of regions of abnormal repolarization reasonably accurately in terms of size, location and timing.

Conclusions: This study validates a potential-based ECGI approach to noninvasively image activation and recovery in sinus rhythm. Despite inaccuracies in epicardial breakthroughs and lines of conduction block, other important clinical features such as regions of abnormal repolarization can be accurately derived making ECGI a valuable clinical tool.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jelectrocard.2019.08.007DOI Listing

Publication Analysis

Top Keywords

activation repolarization
12
electrocardiographic imaging
8
ecgi
8
potential-based ecgi
8
ecgi approach
8
reconstructed activation
8
regions abnormal
8
abnormal repolarization
8
repolarization
7
activation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!