Applying next-generation sequencing to track falciparum malaria in sub-Saharan Africa.

Malar J

EPPIcenter Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.

Published: September 2019

Next-generation sequencing (NGS) technologies are increasingly being used to address a diverse range of biological and epidemiological questions. The current understanding of malaria transmission dynamics and parasite movement mainly relies on the analyses of epidemiologic data, e.g. case counts and self-reported travel history data. However, travel history data are often not routinely collected or are incomplete, lacking the necessary level of accuracy. Although genetic data from routinely collected field samples provides an unprecedented opportunity to track the spread of malaria parasites, it remains an underutilized resource for surveillance due to lack of local awareness and capacity, limited access to sensitive laboratory methods and associated computational tools and difficulty in interpreting genetic epidemiology data. In this review, the potential roles of NGS in better understanding of transmission patterns, accurately tracking parasite movement and addressing the emerging challenges of imported malaria in low transmission settings of sub-Saharan Africa are discussed. Furthermore, this review highlights the insights gained from malaria genomic research and challenges associated with integrating malaria genomics into existing surveillance tools to inform control and elimination strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720407PMC
http://dx.doi.org/10.1186/s12936-019-2880-1DOI Listing

Publication Analysis

Top Keywords

next-generation sequencing
8
sub-saharan africa
8
parasite movement
8
travel history
8
history data
8
data routinely
8
routinely collected
8
malaria
6
data
5
applying next-generation
4

Similar Publications

Genomics costing tool: considerations for improving cost-efficiencies through cross scenario comparison.

Front Public Health

January 2025

Technical Advice and Partnership Department, The Global Fund to Fight AIDS, Tuberculosis and Malaria, Geneva, Switzerland.

Next-generation sequencing (NGS) is crucial for monitoring and investigating infectious disease outbreaks, providing essential data for public health decisions. The COVID-19 pandemic has significantly expanded pathogen sequencing and bioinformatics capacities worldwide, creating an opportunity to leverage these advancements for other pathogens with pandemic and epidemic potential. In response to the need for a systematic cost estimation approach for sustainable genomic surveillance, particularly in low- and middle-income countries, five institutions collaborated to develop the genomics costing tool (GCT).

View Article and Find Full Text PDF

Background: Early life gut microbiota is known to shape the immune system and has a crucial role in immune homeostasis. Only little is known about composition and dynamics of the intestinal microbiota in infants with congenital heart disease (CHD) and potential influencing factors.

Methods: We evaluated the intestinal microbial composition of neonates with CHD ( = 13) compared to healthy controls (HC,  = 30).

View Article and Find Full Text PDF

Objective: To describe the real-world clinical impact of a commercially available plasma cell-free DNA metagenomic next-generation sequencing assay, the Karius test (KT).

Methods: We retrospectively evaluated the clinical impact of KT by clinical panel adjudication. Descriptive statistics were used to study associations of diagnostic indications, host characteristics, and KT-generated microbiologic patterns with the clinical impact of KT.

View Article and Find Full Text PDF

Systematic empirical evaluation of individual base editing targets: validating therapeutic targets in USH2A and comparison of methods.

Mol Ther

January 2025

Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA. Electronic address:

Base editing shows promise for the correction of human mutations at a higher efficiency than other repair methods and is especially attractive for mutations in large genes that are not amenable to gene augmentation therapy. Here, we demonstrate a comprehensive workflow for in vitro screening of potential therapeutic base editing targets for the USH2A gene and empirically validate the efficiency of adenine and cytosine base editor/guide combinations for correcting 35 USH2A mutations. Editing efficiency and bystander edits are compared between different target templates (plasmids versus transgenes) and assays (Next generation sequencing versus Sanger), as well as comparisons between unbiased empirical results and computational predictions.

View Article and Find Full Text PDF

The COVID-19 pandemic has underscored the importance of virus surveillance in public health and wastewater-based epidemiology (WBE) has emerged as a non-invasive, cost-effective method for monitoring SARS-CoV-2 and its variants at the community level. Unfortunately, current variant surveillance methods depend heavily on updated genomic databases with data derived from clinical samples, which can become less sensitive and representative as clinical testing and sequencing efforts decline.In this paper, we introduce HERCULES (High-throughput Epidemiological Reconstruction and Clustering for Uncovering Lineages from Environmental SARS-CoV-2), an unsupervised method that uses long-read sequencing of a single 1 Kb fragment of the Spike gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!