Background: Plants have evolved intimate interactions with soil microbes for a range of beneficial functions including nutrient acquisition, pathogen resistance and stress tolerance. Further understanding of this system is a promising way to advance sustainable agriculture by exploiting the versatile benefits offered by the plant microbiome. The rhizosphere is the interface between plant and soil, and functions as the first step of plant defense and root microbiome recruitment. It features a specialized microbial community, intensive microbe-plant and microbe-microbe interactions, and complex signal communication. To decipher the rhizosphere microbiome assembly of soybean (Glycine max), we comprehensively characterized the soybean rhizosphere microbial community using 16S rRNA gene sequencing and evaluated the structuring influence from both host genotype and soil source.
Results: Comparison of the soybean rhizosphere to bulk soil revealed significantly different microbiome composition, microbe-microbe interactions and metabolic capacity. Soil type and soybean genotype cooperatively modulated microbiome assembly with soil type predominantly shaping rhizosphere microbiome assembly while host genotype slightly tuned this recruitment process. The undomesticated progenitor species, Glycine soja, had higher rhizosphere diversity in both soil types tested in comparison to the domesticated soybean genotypes. Rhizobium, Novosphingobium, Phenylobacterium, Streptomyces, Nocardioides, etc. were robustly enriched in soybean rhizosphere irrespective of the soil tested. Co-occurrence network analysis revealed dominant soil type effects and genotype specific preferences for key microbe-microbe interactions. Functional prediction results demonstrated converged metabolic capacity in the soybean rhizosphere between soil types and among genotypes, with pathways related to xenobiotic degradation, plant-microbe interactions and nutrient transport being greatly enriched in the rhizosphere.
Conclusion: This comprehensive comparison of the soybean microbiome between soil types and genotypes expands our understanding of rhizosphere microbe assembly in general and provides foundational information for soybean as a legume crop for this assembly process. The cooperative modulating role of the soil type and host genotype emphasizes the importance of integrated consideration of soil condition and plant genetic variability for future development and application of synthetic microbiomes. Additionally, the detection of the tuning role by soybean genotype in rhizosphere microbiome assembly provides a promising way for future breeding programs to integrate host traits participating in beneficial microbiota assembly.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720100 | PMC |
http://dx.doi.org/10.1186/s12866-019-1572-x | DOI Listing |
Int J Mol Sci
November 2024
Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
Changes in root traits and rhizosphere microbiome are important ways to optimize plant phosphorus (P) efficiency and promote multifunctionality in intercropping. However, whether and how synthetic microbial communities isolated from polyculture systems can facilitate plant growth and P uptake are still largely unknown. A field experiment was first carried out to assess the rice yield and P uptake in the rice/soybean intercropping systems, and a synthetic microbial community (SynCom) isolated from intercropped rice was then constructed to elucidate the potential mechanisms of growth-promoting effects on rice growth and P uptake in a series of pot experiments.
View Article and Find Full Text PDFJ Adv Res
December 2024
National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:
Introduction: Crop rotation, a crucial agricultural practice that enhances soil health and crop productivity, is widely used in agriculture worldwide. Soybeans play a crucial role in crop rotation owing to their nitrogen-fixing ability, which is facilitated by symbiotic bacteria in their root systems. The soybean-rapeseed rotation is an effective agricultural practice in the Yangtze River Basin of China.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
December 2024
Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.
Plant-beneficial Pseudomonas and Bacillus have been extensively studied and applied in biocontrol of plant diseases. However, there is less known about their interaction within two-strain synthetic communities (SynCom). Our study revealed that Pseudomonas protegens Pf-5 inhibits the growth of several Bacillus species, including Bacillus velezensis.
View Article and Find Full Text PDFFront Microbiol
November 2024
Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, College of Life Sciences, Fuzhou, China.
Context: Intercropping in agriculture is crucial for addressing challenges in intensive tea farming. Forage legumes reduce fertilizer dependence and significantly boost productivity. Currently, intercropping with legumes enhances the environmental conditions of tea plantations and improves tea quality.
View Article and Find Full Text PDFRes Microbiol
December 2024
Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Instituto de Biotecnología Ambiental y Salud (INBIAS), CONICET, Ruta Nacional 36 Km 601 (X5804BYA) Río Cuarto, Córdoba, Argentina. Electronic address:
Pseudomonas sp. AW4 is a highly arsenic (As) resistant bacterium with plant growth promoting properties, originally isolated from the soybean (Glycine max L.) rhizosphere.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!