Larmor frequency dependence on structural anisotropy of magnetically heterogeneous media.

J Magn Reson

Medical Physics, Dept. of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany. Electronic address:

Published: October 2019

The effect of anisotropic magnetic microstructure on the measurable Larmor frequency offset is investigated in media with heterogeneous magnetic susceptibility using Monte Carlo simulations. The focus is on the transition between the regimes of fast and slow diffusion of NMR-reporting molecules. Simulations demonstrate a perfect agreement with the previously developed analytic theory for fast diffusion. Beyond this regime, the frequency offset shows a pronounced dependence on the medium microarchitecture and the diffusivity of NMR-reporting spins in relation to the magnitude of the susceptibility-induced magnetic field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2019.106584DOI Listing

Publication Analysis

Top Keywords

larmor frequency
8
frequency offset
8
frequency dependence
4
dependence structural
4
structural anisotropy
4
anisotropy magnetically
4
magnetically heterogeneous
4
heterogeneous media
4
media anisotropic
4
anisotropic magnetic
4

Similar Publications

Multichannel transceiver coil arrays are needed to enable parallel imaging and B1 manipulation in ultrahigh field MR imaging and spectroscopy. However, the design of such transceiver coils and coil arrays often faces technical challenges in achieving the required high operating frequency at the ultrahigh fields and sufficient electromagnetic (EM) decoupling between resonant elements. In this work, we propose a high impedance microstrip transmission line resonator (HIMTL) technique that has unique high frequency capability and adequate EM decoupling without the use of dedicated decoupling circuits.

View Article and Find Full Text PDF

Multinuclear H, C, and Na magnetic resonance (MR) has many advantages for studying porous media systems containing hydrocarbons and brine. In recent work, we have explored changing the nucleus measured, keeping the Larmor frequency constant, by changing the static magnetic field B. Increasing the static B field distorts the field in the pore space due to susceptibility mismatch between the matrix and pore fluid.

View Article and Find Full Text PDF

The application of NMR crystallography to organic molecules is exemplified by two case studies. For the tosylate salt of the active pharmaceutical ingredient, Ritlectinib, solid-state NMR spectra are presented at a H Larmor frequency of 1 GHz and a magic-angle spinning (MAS) frequency of 60 kHz. Specifically, N-H heteronuclear multiple-quantum coherence (HMQC) and H-H double-quantum (DQ) single-quantum (SQ) correlation experiments are powerful probes of hydrogen bonding interactions.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) relies on high-performance receive coils to achieve optimal signal-to-noise ratio (SNR), but conventional designs are often bulky and complex. Recent advancements in metamaterial technology have led to the development of metamaterial-inspired receive coils that enhance imaging capabilities and offer design flexibility. However, these configurations typically face challenges related to reduced adaptability and increased physical footprint.

View Article and Find Full Text PDF

First of a kind 6D-Vlasov computer simulations of high frequency ion Bernstein wave turbulence for parameters relevant to the tokamak edge show transport comparable to sub-Larmor-frequency gyrokinetic turbulence. The customary restriction of magnetized plasma turbulence studies to the gyrokinetic approximation may not be based on physics but only on a practical constraint due to computational cost. Deciphering turbulent transport is crucial since edge turbulence significantly influences the confinement properties of magnetically confined plasmas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!