A combined calorimetric gas- and spore-based biosensor array is presented in this work to monitor and evaluate the sterilization efficacy of gaseous hydrogen peroxide in aseptic filling machines. HO has been successfully measured under industrial conditions. Furthermore, the effect of HO on three different spore strains , namely Bacillus atrophaeus, Bacillus subtilis and Geobacillus stearothermophilus, has been investigated by means of SEM, AFM and impedimetric measurements. In addition, the sterilization efficacy of a spore-based biosensor and the functioning principle are addressed and discussed: the sensor array is convenient to be used in aseptic food industry to guarantee sterile packages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2019.111628 | DOI Listing |
Microsyst Nanoeng
December 2024
Department of Electrical & Computer Engineering, Bioelectronics & Microsystems Laboratory, State University of New York at Binghamton, Binghamton, NY, 13902, USA.
We introduce a groundbreaking proof-of-concept for a novel glucose monitoring transducing mechanism, marking the first demonstration of a spore-forming microbial whole-cell sensing platform. The approach uses selective and sensitive germination of Bacillus subtilis spores in response to glucose in potassium-rich bodily fluids such as sweat. As the rate of germination and the number of metabolically active germinating cells are directly proportional to glucose concentration, the electrogenic activity of these cells-manifested as electricity-serves as a self-powered transducing signal for glucose detection.
View Article and Find Full Text PDFSci Rep
December 2022
Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India.
The study's goal was to develop a spore-based paper strip biosensor for detecting ß-lactam antibiotics in milk using the enzyme induction principle. A new spore-based paper strip biosensor has been developed after important operating parameters such as spore volume, substrate volume, exposure time and temperature, and incubation time and temperature were optimised. The limit of detection for various ß-lactam antibiotics, including amoxicillin, penicillin, ampicillin, carbenicillin, cloxacillin, nafcillin, oxacillin, cephalothin, cefalexin, cefoxitin, cefazolin, and cefuroxime, was determined in milk with detection sensitivity of 1 ppb, 2 ppb, 2 ppb, 10 ppb, 10 ppb, 10 ppb, 20 ppb, 10 ppb 1000 ppb, 10 ppb 300 ppb and 100 ppb, respectively.
View Article and Find Full Text PDFFood Chem
March 2023
State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, PR China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China. Electronic address:
Due to growing food safety issues, developing economic, rapid, and sensitive strategies for food spoilage monitoring has attracted significant attention. Here, a Bacillus subtilis spore-based biosensor is presented for rapid, highly sensitive, visual biogenic amines detection. The biosensor is fabricated through biogenic amines-induced pH increase which inhibits the electron transfer between Cu ion sites within CotA-laccase on the spore surface, leading to decrease in catalytic oxidation activity towards the chromogenic substrates.
View Article and Find Full Text PDFJ Hazard Mater
October 2021
State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:
The excess residues of fluoride ions cause serious human health problems, making their detection highly valuable. In this work, a whole-cell-based biosensor was presented for the detection of fluoride ions, which can inhibit the color reaction of 3,3',5,5',-tetramethylbenzidine (TMB) catalyzed by the CotA-laccase of spore surface. This reaction for the detection of fluoride ions could be read out through UV-vis spectrophotometer, smartphone, or standard colorimetric card within 10 min.
View Article and Find Full Text PDFAnal Bioanal Chem
March 2021
Graduate Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan.
Lateral flow immunoassays (LFIs) can be used to detect intact bacteria or spores; when gold nanoparticles (AuNPs) are used as the signal reporters, the detection limits are very low. Spore-based surface display has been widely studied for enzyme immobilization and live-nontoxic oral vaccines. In this study, recombinant spores were used to improve the sensitivity of a LFI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!