The neuroprotective role of melatonin in a gestational hypermethioninemia model.

Int J Dev Neurosci

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.

Published: November 2019

Elevated levels of methionine in blood characterize the hypermethioninemia, which may have genetic or non-genetic origin, as for example from high protein diet. Born rats from hypermethioninemic mothers presented cerebral oxidative stress, inhibition of Na,K-ATPase, memory deficit and ultrastructure cerebral changes. Melatonin is a hormone involved in circadian rhythm and has antioxidant effects. The aim of this study was to verify the possible neuroprotective effects of melatonin administration in hypermethioninemic pregnant rats on damage to biomolecules (Na,K-ATPase, sulfhydryl content and DNA damage index) and behavior (open field, novel object recognition and water maze tasks), as well as its effect on cells morphology by electron microscopy in offspring. Wistar female rats received methionine (2.68 μmol/g body weight) and/or melatonin (10 mg/kg body weight) by subcutaneous injections during entire pregnancy. Control rats received saline. Biochemical analyzes were performed at 21 and 30 days of life of offspring and behavioral analyzes were performed only at 30 days of age in male pups. Results showed that gestational hypermethioninemia diminished Na,K-ATPase activity and sulfhydryl content and increased DNA damage at 21 and 30 days of life. Melatonin was able to totally prevent Na,K-ATPase activity alteration at 21 days and partially prevent its alteration at 30 days of rats life. Melatonin was unable in to prevent sulfhydryl and DNA damage at two ages. It also improved DNA damage, but not at level of saline animals (controls). Regarding to behavioral tests, data showed that pups exposed to gestational hypermethioninemia decreased reference memory in water maze, spent more time to the center of the open field and did not differentiate the objects in the recognition test. Melatonin was able to prevent the deficit in novel object recognition task. Electron microscopy revealed ultrastructure alterations in neurons of hypermethioninemic at both ages of offspring, whose were prevented by melatonin. These findings suggest that melatonin may be a good neuroprotective to minimize the harmful effects of gestational hypermethioninemia on offspring.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijdevneu.2019.08.004DOI Listing

Publication Analysis

Top Keywords

gestational hypermethioninemia
16
dna damage
16
melatonin
9
sulfhydryl content
8
open field
8
novel object
8
object recognition
8
water maze
8
electron microscopy
8
rats received
8

Similar Publications

Unlabelled: Adenosine kinase (ADK) deficiency is a rare autosomal recessive inborn error of metabolism involving the methionine and purine metabolic pathways. Prior reports show that most patients present in infancy with jaundice, hypotonia, developmental delay, and mild dysmorphic features. Characteristic biochemical findings included hypoglycemic hyperinsulinism, cholestasis, elevated liver functions, methionine, S-adenosylhomocysteine, and S-adenosylmethionine, with normal or mildly elevated homocysteine level.

View Article and Find Full Text PDF

Analysis of five cases of hypermethioninemia diagnosed by neonatal screening.

J Pediatr Endocrinol Metab

January 2020

Center of Genetic Medicine, The Affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.

Background Hypermethioninemia is a group of diseases with elevated plasma methionine (Met) caused by hereditary and non-hereditary factors, although it could also be caused by administration of the amino acid Met. Among these, the disease caused by methionine adenosyltransferase (MAT) I/III deficiency is the most common, and is characterized by persistent, isolated hypermethioninemia as well as slightly elevated homocysteine. S-adenosylmethionine is the product of Met, which can be used as a direct methyl donor of many substances, such as choline and nucleotide, and essential in the development of the body.

View Article and Find Full Text PDF

The neuroprotective role of melatonin in a gestational hypermethioninemia model.

Int J Dev Neurosci

November 2019

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.

Elevated levels of methionine in blood characterize the hypermethioninemia, which may have genetic or non-genetic origin, as for example from high protein diet. Born rats from hypermethioninemic mothers presented cerebral oxidative stress, inhibition of Na,K-ATPase, memory deficit and ultrastructure cerebral changes. Melatonin is a hormone involved in circadian rhythm and has antioxidant effects.

View Article and Find Full Text PDF

Newborn screening for homocystinurias: Recent recommendations versus current practice.

J Inherit Metab Dis

January 2019

Austrian Newborn Screening, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.

Purpose: To assess how the current practice of newborn screening (NBS) for homocystinurias compares with published recommendations.

Methods: Twenty-two of 32 NBS programmes from 18 countries screened for at least one form of homocystinuria. Centres provided pseudonymised NBS data from patients with cystathionine beta-synthase deficiency (CBSD, n = 19), methionine adenosyltransferase I/III deficiency (MATI/IIID, n = 28), combined remethylation disorder (cRMD, n = 56) and isolated remethylation disorder (iRMD), including methylenetetrahydrofolate reductase deficiency (MTHFRD) (n = 8).

View Article and Find Full Text PDF

Methionine Administration in Pregnant Rats Causes Memory Deficit in the Offspring and Alters Ultrastructure in Brain Tissue.

Neurotox Res

February 2018

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

In the present work, we evaluated the effect of gestational hypermethioninemia on locomotor activity, anxiety, memory, and exploratory behavior of rat offspring through the following behavior tests: open field, object recognition, and inhibitory avoidance. Histological analysis was also done in the brain tissue of pups. Wistar female rats received methionine (2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!