Aims: Leflunomide is a disease modifying anti-rheumatic drug (DMARD) beneficial in refractory cases of rheumatoid arthritis. Since leflunomide approval, hepatotoxicity and instructions of liver function monitoring have been recommended. The current work aimed to explore the possible role of inflammation in leflunomide-induced hepatotoxicity with a focus on the TLR4-mediated stimulation of PI3K/mTOR/NFκB pathway.
Main Methods: Forty-eight male albino mice were allocated into four different groups (n; 12 mice/group). Group (i): normal mice, Group (ii-iv) mice received escalating dosed/s of leflunomide (2.5, 5 or 10 mg/kg, p.o.) every 48 h for eight weeks. At the end of the study, mice were sacrificed, and blood samples were collected for determination of liver enzymes. Liver samples were collected; (1) formalin-fixed for histologic examination, (2) frozen for PI3K and mTOR genes PCR assays.
Key Findings: Results indicated a significant elevation of liver enzymes in leflunomide-treated mice (10 mg/kg); AST and ALT activities were 218.17 ± 6.83 U/L and 99.83 ± 9.82 U/L versus 130.5 ± 12.79 U/L and 44.72 ± 3.58 U/L in the vehicle group. Additionally, histopathological examination revealed higher necro-inflammatory scores in leflunomide-treated mice. Immunohistochemistry indicated dose-dependent increased staining of TLR4 and caspase 3. Furthermore, leflunomide-treated mice (5 or 10 mg/kg) showed greater staining for NFκB compared to vehicle control. RT-PCR results revealed upregulations in genes expressing PI3K and mTOR by leflunomide.
Significance: The current study highlights the possible role of TLR4-PI3K/mTOR/NFκB in the pathogenesis of leflunomide-induced hepatic injury. A better understanding of mechanisms of leflunomide-induced hepatotoxicity may be of translational implication for the predictive, preventive and therapeutic purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2019.116824 | DOI Listing |
Toxics
May 2022
Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
Recent studies indicated renal toxicity and interstitial nephritis in patients receiving leflunomide (LEFN), but the exact mechanism is still unknown. The transforming growth factor β (TGFβ)/p53/Smad2/3 pathway crucially mediates renal fibrosis. We aimed to assess the nephrotoxic effect of LEFN in mice and the possible role of TGFβ-stimulated p53/SMAD2/3 signaling.
View Article and Find Full Text PDFLife Sci
October 2019
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
Aims: Leflunomide is a disease modifying anti-rheumatic drug (DMARD) beneficial in refractory cases of rheumatoid arthritis. Since leflunomide approval, hepatotoxicity and instructions of liver function monitoring have been recommended. The current work aimed to explore the possible role of inflammation in leflunomide-induced hepatotoxicity with a focus on the TLR4-mediated stimulation of PI3K/mTOR/NFκB pathway.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
December 2012
Dept. of Oral Biology, College of Dental Medicine, Georgia Health Sciences Univ., 1120 15th St., CL-2112, Augusta, GA 30912, USA.
The aryl hydrocarbon receptor (AHR) has emerged as a major modulator of inflammatory processes. We tested the hypothesis that AHR activation protects the ischemic-reperfused kidney in association with the suppression of the inflammatory response. Accordingly, male mice were treated with the nondioxin AHR agonist, leflunomide (40 mg/kg ip); vehicle-treated animals served as controls.
View Article and Find Full Text PDFCongenit Anom (Kyoto)
March 2009
Drug Safety Evaluation, Developmental Research Laboratories, Shionogi & Co. Ltd., Osaka, Japan.
Leflunomide has inhibitory effects on dihydroorotate-dehydrogenase activity and protein tyrosine kinase activity. In the present study, a single dose of 50 mg/kg Leflunomide was administered to pregnant mice on one of gestation days (GD)6-11. Characteristic external malformations were craniofacial defects following dosing on GD7, cleft palate on GD9, cleft palate and limb and tail deformities on GD10, and limb deformities on GD11.
View Article and Find Full Text PDFJ Immunol
February 1998
Department of Immunology/Microbiology, Rush-Presbyterian-St. Luke's Medical Center, Chicago, IL 60612, USA.
Leflunomide is an immunosuppressive drug capable of inhibiting T and B cell responses in vivo. A number of studies demonstrate that leflunomide functions both as a pyrimidine synthesis inhibitor and as a tyrosine kinase inhibitor. We previously reported that leflunomide inhibits LPS-stimulated B cell proliferation, cell cycle progression, and IgM secretion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!