Flavonols are a major subclass of flavonoids with a variety of biological and pharmacological activities. Here, we provide a method for the in vitro enzymatic synthesis of a flavonol. In this method, Atf3h and Atfls1, two key genes in the biosynthetic pathway of the flavonols, are cloned and overexpressed in Escherichia coli. The recombinant enzymes are purified via an affinity column and then a bienzymatic cascade is established in a specific synthetic buffer. Two flavonols are synthesized in this system as examples and determined by TLC and HPLC/LC/MS analyses. The method displays obvious advantages in the derivation of flavonols over other approaches. It is time- and labor-saving and highly cost-effective. The reaction is easy to be accurately controlled and thus scaled up for mass production. The target product can be purified easily due to the simple components in the system. However, this system is usually restricted to the production of a flavonol from a flavanone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/59336 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!