Our academic lab has developed a novel, low-cost, disposable endoscope for assessment of the esophagus and stomach without need for large equipment or complex electronics. Usability and intuitiveness of the platform are unknown.  The novel endoscope (NE) consists of a high-definition camera, LED module, and three bellows. Compressed air actuates the bellows, producing camera/LED articulation. Insufflation and lens cleaning ports are present. Video can be displayed on any monitor. Total material costs less than $ 35 US. Five novices, five fellows, and five attendings performed five trials using a conventional endoscope and the NE on an upper tract phantom with six gastric landmarks marked. Outcomes included successful identification and time to landmarks; and intuitiveness (NASA task load index; user comments).  All landmarks were successfully identified with both endoscopes for all trials (n = 900). Attendings and fellows were quicker with the conventional endoscope when compared to the NE (24.48 v 37.13s;  < 0.01). There was no significant time difference between platforms for novices (  = 0.16). All users found the NE intuitive with low mental and physical demand. Novices reported lower temporal demand and effort when using the NE.  The NE was easy to maneuver, intuitive, and successful at visualizing gastric landmarks. All users were pleased with the NE drive mechanism and were successful at visualizing the gastric landmarks in a clinically acceptable time. The novel platform has the potential to facilitate rapid, low-cost, diagnostic assessment of the esophagus and stomach in non-traditional settings - facilitating patient management decisions, minimizing encumbrance, and avoiding cross-contamination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715433PMC
http://dx.doi.org/10.1055/a-0914-2749DOI Listing

Publication Analysis

Top Keywords

novel low-cost
8
low-cost disposable
8
disposable endoscope
8
assessment esophagus
8
esophagus stomach
8
conventional endoscope
8
endoscope
5
evaluation novel
4
endoscope visual
4
visual assessment
4

Similar Publications

The mobility of people with severe visual impairment is limited affecting their comfort and productivity. There are about 45 million people who are blind with global financial burden and annual global cost of productivity estimated to be USD411 billion according to World Health Organization report of 2024. The contributions of the people who are visually impaired to the gross domestic product (GDP) can be enhanced deploying technology.

View Article and Find Full Text PDF

Simulators allow junior otolaryngology residents to practice the delicate procedure of pressure equalization tube (PET) insertion. However, most simulators lack the ability to mimic the differing anatomic complexities between patients, such as variable external auditory canal (EAC) size. We developed a novel low-cost, medium-fidelity 3-dimensional-printed PET simulator with different EAC sizes to better reflect procedure complexity.

View Article and Find Full Text PDF

Biogenic nanoparticles as a promising drug delivery system.

Toxicol Rep

June 2025

Therapeutic Chemistry Department, National Research Center, El Buhouth St., Dokki, Cairo 12622, Egypt.

Nanotechnology has significantly influenced the worldwide medical services sector during the past few decades. Biological collection approaches for nanoparticles are economical, non-toxic, and ecologically benign. This review provides up-to-date information on nanoparticle production processes and biological sources, including algae, plants, bacteria, fungus, actinomycetes, and yeast.

View Article and Find Full Text PDF

Polymers have been ruling the packaging industry for decades due to their versatility, easy manufacturability, and low cost. The overuse of non-biodegradable plastics in food packaging has become a serious environmental concern. Multi-walled carbon nanotube (MWCNT) reinforced nanocomposites have exceptional electrical, thermal, and mechanical properties.

View Article and Find Full Text PDF

Recently, thallium (Tl) contamination at trace levels has gained worldwide attention, particularly in the remote ore-smelting regions of China. To effectively eliminate the residual target Tl(I) ions, one of the best strategies is to develop novel adsorbents with high selectivity. In this study, we selected silicate mineral waste (SMW) and chitosan (CTS) to synthesize a low-cost composite adsorbent for the removal of trace Tl(I).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!