Background: Identification of novel risk long non-coding RNAs (lncRNAs) in lung adenocarcinoma (LUAD) is still a significant challenge in cancer research.

Methods: In this study, we first constructed a LUAD-specific competing endogenous RNA (ceRNA) network using both experimental- and computational-supported datasets. Then, a random walking with restart method was performed to predict LUAD-associated risk lncRNAs based on the ceRNA network. The role of lncRNA MAPKAPK5-AS1 was assessed by siRNA transfection, followed by a colony formation assay, the CCK-8 assay, and immunofluorescence on A549 cells.

Results: Our method achieved an area under the curve (AUC) value of over 0.83. Of the several potential novel LUAD-related lncRNAs identified, the highest ranked lncRNA was SNHG12, which, interestingly, was also shown to promote tumorigenesis and metastasis in LUAD in a recent study. Furthermore, we found that the expression of MAPKAPK5-AS1, which was ranked second, was higher in both LUAD tissues and three LUAD cell lines. After the silencing of MAPKAPK5-AS1 by siRNA transfection, a colony formation assay revealed fewer colonies, and a CCK-8 assay revealed significantly suppressed growth of A549 cells. Moreover, immunofluorescence staining of Ki-67, a proliferation marker, revealed that the proliferation capability of A549 was dramatically reduced following MAPKAPK5-AS1 downregulation. AO/EB staining showed an increased proportion of apoptotic cells among A549 cells depleted of MAPKAPK5-AS1.

Conclusions: In brief, the lncRNAs were predicted to serve as potential biomarkers for the diagnosis, treatment, and prognosis of LUAD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6694253PMC
http://dx.doi.org/10.21037/atm.2019.06.69DOI Listing

Publication Analysis

Top Keywords

long non-coding
8
non-coding rnas
8
random walking
8
competing endogenous
8
endogenous rna
8
cerna network
8
sirna transfection
8
transfection colony
8
colony formation
8
formation assay
8

Similar Publications

Objective: To investigate the role of long non-coding RNAs (lncRNAs) in the metabolic reprogramming of gastric cancer through their regulation of mesenchymal stem cells (MSCs) and HERPUD1 protein targets, aiming to elucidate mechanisms that could lead to novel therapeutic strategies.

Method: The RNA-seq was performed on BGC and hMSC-BGC cells to perform LncRNA screening. And we employed cell culture techniques using hMSC-BM and BGC823 cells, treated with various genetic interventions including siRNA and overexpression vectors.

View Article and Find Full Text PDF

Background: Closed head injury (CHI) provokes a prominent neuroinflammation that may lead to long-term health consequences. Microglia plays pivotal and complex roles in neuroinflammation-mediated neuronal insult and repair following CHI. We previously reported that induced neural stem cells (iNSCs) can block the effects of CXCL12/CXCR4 signaling on NF-κB activation in activated microglia by CXCR4 overexpression.

View Article and Find Full Text PDF

Cells preserve and convey certain gene expression patterns to their progeny through the mechanism called epigenetic memory. Epigenetic memory, encoded by epigenetic markers and components, determines germline inheritance, genomic imprinting, and X chromosome inactivation. First discovered long non coding RNAs were implicated in genomic imprinting and X-inactivation and these two phenomena clearly demonstrate the role of lncRNAs in epigenetic memory regulation.

View Article and Find Full Text PDF

Molecular mechanism of long chain non coding RNA LINC00511 influencing breast cancer stem cells: Mechanism of VEGFR1 protein.

Int J Biol Macromol

January 2025

Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, PR China; Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, PR China; Key Laloratory of Molecular Pathology in Tumors of Guangxi, Baise 533000, Guangxi, PR China; Department of Oncology-Pathology, Karolinska Institutet, Stockholm SE-17176, Sweden. Electronic address:

A comprehensive investigation into the mechanism of VEGFR1 protein in this process was undertaken. Lentivirus-mediated RNA interference was employed to inhibit the expression of LINC00511 in breast cancer cell lines, and changes in breast cancer stem cell markers, including CD44+/CD24-, were monitored using flow cytometry. Additionally, the interaction between VEGFR1 protein and LINC00511 and the activation of its downstream signaling pathway were investigated through co-immunoprecipitation (Co-IP) and Western blot techniques.

View Article and Find Full Text PDF

NEAT1 regulates BMSCs aging through disruption of FGF2 nuclear transport.

Stem Cell Res Ther

January 2025

College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.

Background: The aging of bone marrow mesenchymal stem cells (BMSCs) impairs bone tissue regeneration, contributing to skeletal disorders. LncRNA NEAT1 is considered as a proliferative inhibitory role during cellular senescence, but the relevant mechanisms remain insufficient. This study aims to elucidate how NEAT1 regulates mitotic proteins during BMSCs aging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!