Mammographic breast density is a strong independent risk factor for breast cancer (BC), but the molecular mechanisms behind this risk is yet undetermined and prevention strategies for these women are lacking. The anti-estrogen tamoxifen may reduce the risk of BC but this treatment is associated with severe side effects. Thus, other means for BC prevention, such as diet interventions, need to be developed. Osteopontin (OPN) is a major mediator of inflammation which is key in carcinogenesis. OPN may be cleaved by proteases in the tissue and cleaved OPN may in turn induce an inflammatory cascade in the extracellular microenvironment. We aimed to determine if extracellular OPN was altered in BC and in normal breast tissue with different densities and if tamoxifen or a diet of flaxseed could modify OPN levels. The study comprised 103 women; 13 diagnosed with BC, 42 healthy post-menopausal women with different breast densities at their mammography screen, and 34 post-menopausal women who added 25 g of ground flaxseed/day or were treated with tamoxifen 20 mg/day and were investigated before and after 6 weeks of exposure. Additionally, 10 premenopausal women who added flaxseed for one menstrual cycle and four who were investigated in two unexposed consecutive luteal phases of the menstrual cycle. Microdialysis was used to sample extracellular proteins in breast tissue and proteins were quantified using a multiplex proximity extension assay. We found that, similar to BC, extracellular OPN levels were significantly increased in dense breast tissue. Additionally, significant correlations were found between OPN and chemokine (C-X-C motif) ligand (CXCL)-1, -8, -9, -10, and -11, interleukin-6, vascular endothelial growth factor, matrix metalloproteinase (MMP)-1, -2, -3, 7, and -12 and urokinase-type plasminogen activator whereas no correlations were found with MMP-9, chemokine (C-C motif) ligand (CCL)-2, and -5. Estradiol did not affect OPN levels in breast tissue. None of the interventions altered OPN levels. The pro-tumorigenic protein OPN may indeed be a molecular target for BC prevention in women with increased breast density but other means than tamoxifen or flaxseed i.e., more potent anti-inflammatory approaches, need to be evaluated for this purpose.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6707004PMC
http://dx.doi.org/10.3389/fonc.2019.00746DOI Listing

Publication Analysis

Top Keywords

breast tissue
20
opn levels
16
opn
10
breast
9
breast density
8
extracellular opn
8
post-menopausal women
8
menstrual cycle
8
motif ligand
8
tissue
6

Similar Publications

Type 2 diabetes mellitus (T2DM) adversely affects various organs, including the brain and its blood barrier. In addition to the brain, hyperglycemia damages the testes. The testes possess blood-tissue barriers that share common characteristics and proteins with the blood-brain barrier (BBB), including breast cancer-resistant protein (BCRP).

View Article and Find Full Text PDF

This study presents an advanced dynamic finite element (FE) model of multiple components of the breast to examine the biomechanical impact of different types of physical activities and activity intensity on the breast tissues. Using 4D scanning and motion capture technologies, dynamic data are collected during different activities. The accuracy of the FE model is verified based on relative mean absolute error (RMAE), and optimal material parameters are identified by using a validated stepwise grid search method.

View Article and Find Full Text PDF

Emerging roles of hyaluronic acid hydrogels in cancer treatment and wound healing: A review.

Int J Biol Macromol

January 2025

Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, No. 89 Xiguan Road, Gaozhou 525299, Guangdong, China. Electronic address:

Hyaluronic acid (HA)-derived hydrogels signify a noticeable development in biomedical uses, especially in cancer treatment and wound repair. Cancer continues to be one of the foremost causes of death globally, with current therapies frequently impeded by lack of specificity, serious side effects, and the emergence of resistance. HA hydrogels, characterized by their distinctive three-dimensional structure, hydrophilic nature, and biocompatibility, create an advanced platform for precise drug delivery, improving therapeutic results while minimizing systemic toxicity.

View Article and Find Full Text PDF

Both photothermal therapy (PTT) and chemodynamic therapy (CDT) are designed to focus their antitumor effect on only the tumor site, thereby minimizing unwanted severe damage to healthy tissue outside the tumor. However, each monotherapy is limited in achieving complete tumor eradication, resulting in tumor recurrence. The combination of multiple therapies may help to overcome the limitations of single therapy, improve the chances of complete tumor eradication, and reduce the risk of recurrence.

View Article and Find Full Text PDF

Triptolide's impact on ACER1 signaling: Inducing autophagy for triple-negative breast cancer suppression.

Pathol Res Pract

January 2025

Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, Guilin 541001, China; Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin 541001, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, China; China-USA Lipids in Health and Disease Research Center, Guilin Medical University,Guilin 541001, China; Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, China. Electronic address:

Given the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (Her-2) in triple-negative breast cancer (TNBC) cells, the efficacy of targeted therapies is limited. In this study, we uncovered that triptolide (TP) effectively suppresses the migration and invasiveness of MDA-MB-231 cells by activating autophagic pathways. Western blotting analysis revealed that TP significantly reduced the expression levels of p62 protein, while simultaneously markedly increasing the expression levels of LC3B-II, BNIP3, BNIP3L, ATG5, and ULK1 proteins, strongly suggesting an enhancement of autophagic activity in the cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!