Gastric cancer (GC) is still a major lethal gastrointestinal tumor. In this study, we clarified that RAB13, which is a member of Rab GTPase family and responsible for cargos delivery between the Golgi and the plasma membrane, plays critical roles in the proliferation and the chemotherapeutic resistance in GC cells. Analyzing RAB13 expression in GC specimens, we found that its mRNA level was higher in cancerous tissues compared with normal counterparts and this increase was further associated with malignant progression of GC. Moreover, increased RAB13 indicated poor overall survival (OS) and progression free survival (PFS) in GC patients. We then found that deletion of RAB13 inhibited the proliferation and promoted the apoptosis in AGS and NCI-N87 cells, the impairments of viability which was due to reduced amount of RAB13 anchoring the plasma membrane and attenuated cellular response to EGF treatment and the activation of downstream Akt/ERK/mTOR signaling pathways accordingly. Moreover, in vitro experiments showed that RAB13 deletion enhanced the sensitization of AGS and NCI-N87 cells toward cisplatin (CDDP) and 5-fluorouracil (5-FU) treatment respectively. Together, these data demonstrate that RAB13 promotes the proliferation and confers CDDP and 5-FU resistance to GC cells, which provides experimental support to target this protein in future clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2019.08.141DOI Listing

Publication Analysis

Top Keywords

rab13
8
promotes proliferation
8
proliferation chemotherapeutic
8
chemotherapeutic resistance
8
gastric cancer
8
plasma membrane
8
resistance cells
8
ags nci-n87 cells
8
rab13 novel
4
novel prognosis
4

Similar Publications

Hepatitis E virus (HEV) exists in two distinct forms: a non-enveloped form (neHEV), which is present in feces and bile, and a quasi-enveloped form (eHEV), found in circulating blood and culture supernatants. This study aimed to elucidate the roles of Ras-associated binding 13 (Rab13) and protein kinase A (PKA) in the entry mechanisms of both eHEV and neHEV, utilizing small interfering RNA (siRNA) and chemical inhibitors. The results demonstrated that the entry of both viral forms is dependent on Rab13 and PKA.

View Article and Find Full Text PDF

Targeted therapies persist as the conventional method of treatment of kidney clear cell carcinoma (KIRC). However, resistance to these drugs emerges as a significant impediment to the management of renal cancer. MICAL-L2 plays a pivotal role in cytoskeleton rearrangement.

View Article and Find Full Text PDF

Peripheral blood samples from 15 septic patients admitted within 24 h and 8 healthy volunteers were used to conduct RNA-seq. Quantitative PCR of THP1 cells was performed to investigate the expression levels of the selected key genes. A total of 1,128 differential genes were identified, 721 of which were upregulated and 407 were downregulated.

View Article and Find Full Text PDF

An RXLR effector disrupts vesicle trafficking at ER-Golgi interface for Phytophthora capsici pathogenicity.

Mol Cells

December 2024

Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Article Synopsis
  • Phytophthora species secrete effectors to manipulate plant immunity, but the specific mechanisms of their induced necrotic cell death remain unclear.
  • The study focuses on an RXLR effector named Pc12 from Phytophthora capsici, which promotes virulence by triggering an unusual ER stress response through interaction with Rab13-2.
  • Unlike typical immune responses, Pc12 alters the behavior of Rab13-2, affecting protein localization in the endoplasmic reticulum and inhibiting normal vesicle trafficking, thereby allowing the pathogen to successfully infect the host.
View Article and Find Full Text PDF

RAB13 regulates macrophage polarization in sepsis.

Sci Rep

September 2024

Department of Emergency Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.

Article Synopsis
  • Researchers focused on RAB13, identified as a potential core target in sepsis patients' blood, to investigate its role and mechanisms.
  • They analyzed RNA-seq data from sepsis patients and healthy individuals, confirming that higher RAB13 levels are linked to more severe sepsis and poorer survival rates.
  • Single-cell sequencing showed RAB13 is mainly found in monocytes, and experiments indicated that knocking down RAB13 leads to an increase in M2 macrophage polarization, which is connected to the ECM-receptor interaction signaling pathway.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!