Elastodynamics of a half-space coated by a thin soft layer with a clamped upper face is considered. The focus is on the analysis of localized waves that do not exist on a clamped homogeneous half-space. Non-traditional effective boundary conditions along the substrate surface incorporating the effect of the coating are derived using a long-wave high-frequency procedure. The derived conditions are implemented within the framework of the earlier developed specialized formulation for surface waves, resulting in a perturbation of the shortened equation of surface motion in the form of an integral or pseudo-differential operator. Non-uniform asymptotic formula for the speeds of the sought for Rayleigh-type waves, failing near zero frequency and the thickness resonances of a layer with both clamped faces, follow from the aforementioned perturbed equation. Asymptotic results are compared with the numerical solutions of the full dispersion relation for a clamped coated half-space. A similarity with Love-type waves proves to be useful for interpreting numerical data. This article is part of the theme issue 'Modelling of dynamic phenomena and localization in structured media (part 1)'.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rsta.2019.0111 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!