Inflammatory bowel disease (IBD) in humans is closely related to bacterial infection and the disruption of the intestinal barrier. Paeoniflorin (PF), a bioactive compound from Paeonia lactiflora Pallas plants, exerts a potential effect of anti-inflammatory reported in various researches. However, the effect of PF on intestinal barrier function and its related mechanisms has not been identified. Here, we investigate the PF potential anti-inflammatory effect on lipopolysaccharide (LPS)-stimulated human Caco-2 cell monolayers and explore its underlying key molecular mechanism. In this context, PF significantly increased TEER value, decreased intestinal epithelium FITC-dextran flux permeability, and restored the expressions of occludin, ZO-1, and claudin5 in LPS-induced Caco-2 cell. In vitro, treatment of PF significantly inhibited LPS-induced expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), and matrix metalloproteinase-9 (MMP-9). In addition, we found that PF suppressed nuclear factor kappa B (NF-κB) signaling via activating the Nrf2/HO-1 signaling pathways in ILPS-stimulated Caco-2 cells. Our findings indicate that PF has an inhibitory effect on endothelial injury. Our findings suggested that PF has an anti-inflammatory effect in ILPS-stimulated Caco-2 cells, which might be a potential therapeutic agent against IBD and intestinal inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10753-019-01085-zDOI Listing

Publication Analysis

Top Keywords

intestinal barrier
12
caco-2 cell
12
cell monolayers
8
potential anti-inflammatory
8
ilps-stimulated caco-2
8
caco-2 cells
8
intestinal
5
caco-2
5
paeoniflorin prevents
4
prevents intestinal
4

Similar Publications

Antihypertensive effects of rice peptides involve intestinal microbiome alterations and intestinal inflammation alleviation in spontaneously hypertensive rats.

Food Funct

January 2025

Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.

Gut dysbiosis serves as an underlying risk factor for the development of hypertension. The resolution of this dysbiosis has emerged as a promising strategy in improving hypertension. Food-derived bioactive protein peptides have become increasingly more attractive in ameliorating hypertension, primarily due to their anti-inflammatory and anti-oxidant activities.

View Article and Find Full Text PDF

Background: Studies using Alzheimer's disease (AD) models suggest that gut bacteria contribute to amyloid pathology and systemic inflammation. Further, gut-derived metabolites serve critical roles in regulating cholesterol, blood-brain barrier permeability, neuroinflammation, and circadian rhythms. Recent studies from the Alzheimer's Disease Neuroimaging Initiative have shown that serum-based gut-derived metabolites are associated with AD biomarkers and cognitive impairment.

View Article and Find Full Text PDF

Background: Irritable bowel syndrome (IBS) is a common gastrointestinal disease. Recently, an increasing number of studies have shown that Toll-like receptor 4 (TLR4), widely distributed on the surface of a variety of epithelial cells (ECs) and immune sentinel cells in the gut, plays a vital role in developing IBS.

Objectives: We sought to synthesize the existing literature on TLR4 in IBS and inform further study.

View Article and Find Full Text PDF

Engineered S. cerevisiae-pYD1-ScFv-AFB1 mitigates Aflatoxin B1 toxicity via bio-binding and intestinal microenvironment repair.

Food Chem Toxicol

December 2024

National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China. Electronic address:

The highly toxic aflatoxin B1 (AFB1) is considered one of the primary risk factors for hepatocellular carcinoma, while effective measures after AFB1 exposure remain to be optimized. This study utilized cell-surface-display technique to construct an engineered S. cerevisiae-pYD1-ScFv-AFB1 (S.

View Article and Find Full Text PDF

Dihydromyricetin/montmorillonite intercalation compounds ameliorates DSS-induced colitis: Role of intestinal epithelial barrier, NLRP3 inflammasome pathway and gut microbiota.

Int J Pharm

December 2024

Department of Gastroenterology, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Key Laboratory of Digestive Diseases, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China. Electronic address:

Dihydromyricetin (DHM), the primary active compound in vine tea possesses various pharmacological effects such as anti-inflammatory and antioxidant properties, along with high biosafety. However, its oral delivery remains a significant challenge. Montmorillonite (MMT), the primary component of bentonite, is a commonly used drug in the clinical treatment of gastrointestinal diseases and serves as an excellent drug carrier due to its intercalation capability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!