Purpose: This study investigated the potential of deep convolutional neural networks (CNN) for automatic classification of FP-CIT SPECT in multi-site or multi-camera settings with variable image characteristics.

Methods: The study included FP-CIT SPECT of 645 subjects from the Parkinson's Progression Marker Initiative (PPMI), 207 healthy controls, and 438 Parkinson's disease patients. SPECT images were smoothed with an isotropic 18-mm Gaussian kernel resulting in 3 different PPMI settings: (i) original (unsmoothed), (ii) smoothed, and (iii) mixed setting comprising all original and all smoothed images. A deep CNN with 2,872,642 parameters was trained, validated, and tested separately for each setting using 10 random splits with 60/20/20% allocation to training/validation/test sample. The putaminal specific binding ratio (SBR) was computed using a standard anatomical ROI predefined in MNI space (AAL atlas) or using the hottest voxels (HV) analysis. Both SBR measures were trained (ROC analysis, Youden criterion) using the same random splits as for the CNN. CNN and SBR trained in the mixed PPMI setting were also tested in an independent sample from clinical routine patient care (149 with non-neurodegenerative and 149 with neurodegenerative parkinsonian syndrome).

Results: Both SBR measures performed worse in the mixed PPMI setting compared to the pure PPMI settings (e.g., AAL-SBR accuracy = 0.900 ± 0.029 in the mixed setting versus 0.957 ± 0.017 and 0.952 ± 0.015 in original and smoothed setting, both p < 0.01). In contrast, the CNN showed similar accuracy in all PPMI settings (0.967 ± 0.018, 0.972 ± 0.014, and 0.955 ± 0.009 in mixed, original, and smoothed setting). Similar results were obtained in the clinical sample. After training in the mixed PPMI setting, only the CNN provided acceptable performance in the clinical sample.

Conclusions: These findings provide proof of concept that a deep CNN can be trained to be robust with respect to variable site-, camera-, or scan-specific image characteristics without a large loss of diagnostic accuracy compared with mono-site/mono-camera settings. We hypothesize that a single CNN can be used to support the interpretation of FP-CIT SPECT at many different sites using different acquisition hardware and/or reconstruction software with only minor harmonization of acquisition and reconstruction protocols.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00259-019-04502-5DOI Listing

Publication Analysis

Top Keywords

automatic classification
8
deep convolutional
8
convolutional neural
8
neural networks
8
variable image
8
fp-cit spect
8
ppmi settings
8
mixed setting
8
original smoothed
8
random splits
8

Similar Publications

Integrated Circuits are made of various transistors that are embedded on a silicon wafer, these wafers are difficult to process and hence are prone to defects. Defecting these defects manually is a time consuming and labour-intensive task and hence automation is necessary. Deep Learning approach is better suited in this case as it is able to generalize defects if trained properly and can be a solution to segmentation and classification of defects automatically.

View Article and Find Full Text PDF

End-to-End Deep Learning Prediction of Neoadjuvant Chemotherapy Response in Osteosarcoma Patients Using Routine MRI.

J Imaging Inform Med

January 2025

Department of Radiology, Peking University People's Hospital, 11 Xizhimen Nandajie, Xicheng District, Beijing, 100044, P. R. China.

This study aims to develop an end-to-end deep learning (DL) model to predict neoadjuvant chemotherapy (NACT) response in osteosarcoma (OS) patients using routine magnetic resonance imaging (MRI). We retrospectively analyzed data from 112 patients with histologically confirmed OS who underwent NACT prior to surgery. Multi-sequence MRI data (including T2-weighted and contrast-enhanced T1-weighted images) and physician annotations were utilized to construct an end-to-end DL model.

View Article and Find Full Text PDF

VAE-Surv: A novel approach for genetic-based clustering and prognosis prediction in myelodysplastic syndromes.

Comput Methods Programs Biomed

January 2025

Computational Biomedicine Unit, Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Torino, Italy.

Background And Objectives: Several computational pipelines for biomedical data have been proposed to stratify patients and to predict their prognosis through survival analysis. However, these analyses are usually performed independently, without integrating the information derived from each of them. Clustering of survival data is an underexplored problem, and current approaches are limited for biomedical applications, whose data are usually heterogeneous and multimodal, with poor scalability for high-dimensionality.

View Article and Find Full Text PDF

Lymphadenopathy is associated with lymph node abnormal size or consistency due to many causes. We employed the deep convolutional neural network ResNet-34 to detect and classify CT images from patients with abdominal lymphadenopathy and healthy controls. We created a single database containing 1400 source CT images for patients with abdominal lymphadenopathy (n = 700) and healthy controls (n = 700).

View Article and Find Full Text PDF

Background/purpose: Artificial intelligence (AI) can assist in medical diagnosis owing to its high accuracy and efficiency. This study aimed to develop a diagnostic system for automatically determining the degree of tooth wear (TW) using intraoral photographs with deep learning.

Materials And Methods: The study included 388 intraoral photographs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!