Currently used Gd-based and Mn-based small molecular MRI contrast agents fail to meet the requirements for the long-term monitoring, and the potential safety risk under high administration dose or repeat dosing needs to be considered. In the present study, a biocompatible macromolecular magnetic resonance imaging (MRI) contrast agents based on O-carboxymethyl chitosan (CMCS), CMCS-(Mn-DTPA) was designed and synthesized. The relaxivity of CMCS-(Mn-DTPA) is approximately 3.5 and 5.5 times higher than that of Gd-DTPA and Mn-DPDP in aqueous solution, respectively. The MRI signal intensity in the kidney and liver of Sprague Dawley (SD) rats is significantly increased at a dose of 0.03 mM Mn/kg b.w. CMCS-(Mn-DTPA) accompanied by a long effective imaging window. According to in vitro studies, CMCS-(Mn-DTPA) exhibits good cellular and blood biocompatibility at the dose necessary for MRI imaging. Based on the results from in vivo studies, manganese (Mn) is completely excreted from SD rats within ten days after administration and does not exert a pathological effect on the liver. CMCS-(Mn-DTPA) represents a potentially novel MRI contrast agent due to its excellent relaxivity, long effective imaging window and good biocompatibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2019.110452 | DOI Listing |
Sci Rep
January 2025
Department of Electrical Electronical Engineering, Yaşar University, Bornova, İzmir, Turkey.
We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.
View Article and Find Full Text PDFEur Radiol
January 2025
Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.
Objectives: To conduct a meta-analysis of the diagnostic performance of non-contrast magnetic resonance pulmonary angiography (NC-MRPA) and ventilation-perfusion (V/Q) scintigraphy for the detection of acute pulmonary embolism (PE).
Materials And Methods: Systematic searches of electronic databases were conducted from 2000 to 2024. Primary outcomes were per-patient sensitivity and specificity of NC-MRPA and V/Q scintigraphy.
Radiography (Lond)
January 2025
Radiotherapy, Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, UK; Leeds Institute of Medical Research, University of Leeds, Leeds, UK; NIHR Leeds Biomedical Research Centre, Leeds, UK.
Introduction: Using non-medicinal oral contrast agents may aid safe delivery of magnetic resonance image-guided (MR-guided) radiotherapy by improving the ability to visualise and avoid excessive radiation dose to adjacent bowel/stomach. This scoping review aims to map the literature on non-medicinal oral contrasts used in upper-abdominal diagnostic or therapeutic magnetic resonance imaging (MRI) to find potential candidates for employing in MR-guided radiotherapy and identify gaps in knowledge for further study.
Methods: A scoping review of non-medicinal oral contrast used in upper-abdominal MRI research followed a pre-defined protocol based on Arksey and O'Malley's framework.
Radiol Clin North Am
March 2025
Radiology Department, Northwestern University Feinberg School of Medicine, Arkes Pavilion, 676 North St Clair Street, Suite 800, Chicago, IL 60611, USA. Electronic address:
Cardiac MR imaging and pulmonary MR angiography (MRA) are important clinical tools for the assessment of pulmonary vascular diseases. There are evolving noncontrast and contrast-enhanced techniques to evaluate pulmonary vasculature. Pulmonary MRA is a feasible imaging alternative to CTA in pulmonary embolism detection.
View Article and Find Full Text PDFMagn Reson Imaging
January 2025
Department of Medical Imaging, Pingyin people's Hospital, Jinan 250400, China.
Magnetic Resonance Imaging is a cornerstone of medical diagnostics, providing high-quality soft tissue contrast through non-invasive methods. However, MRI technology faces critical limitations in imaging speed and resolution. Prolonged scan times not only increase patient discomfort but also contribute to motion artifacts, further compromising image quality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!