Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We consider theoretically a network of pulse coupled oscillators with time delays. Each oscillator is described by the Oregonator-like model for the Belousov-Zhabotinsky (BZ) reaction. Different groups of oscillators constitute five functional units: (1) a central pattern generator (CPG), (2) a "reader" unit that can identify dynamical modes of the CPG, (3) an antenna (A) unit that receives external signals and responds on them by generating different dynamical modes, (4) another reader unit for identification of the dynamical modes in the A unit, and (5) a decision making unit that switches the current dynamical mode of the CPG to the mode that is similar to the current mode in the A unit. We call this network a chemical neurocomputer, since chemical BZ reaction occurs in each micro-oscillator, while pulse connectivity of these cells is inspired by the brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5099979 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!