Evaluation of clan CD C11 peptidase PNT1 and other Leishmania mexicana cysteine peptidases as potential drug targets.

Biochimie

York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK. Electronic address:

Published: November 2019

Leishmania mexicana is one of the causative agents of cutaneous leishmaniasis in humans. There is an urgent need to identify new drug targets to combat the disease. Cysteine peptidases play crucial role in pathogenicity and virulence in Leishmania spp. and are promising targets for developing new anti-leishmanial drugs. Genetic drug target validation has been performed on a number of cysteine peptidases, but others have yet to be characterized. We targeted 16 L. mexicana cysteine peptidases for gene deletion and tagging using CRISPR-Cas9 in order to identify essential genes and ascertain their cellular localization. Our analysis indicates that two clan CA, family C2 calpains (LmCAL27.1, LmCAL31.6) and clan CD, family C11 PNT1 are essential for survival in the promastigote stage. The other peptidases analysed, namely calpains LmCAL4.1, LmCAL25.1, and members of clan CA C51, C78, C85 and clan CP C97 were found to be non-essential. We generated a gene deletion mutant (Δpnt1) which was severely compromised in its cell growth and a conditional gene deletion mutant of PNT1 (Δpnt1: PNT1/Δ pnt1:HYG [SSU DiCRE]). PNT1 localizes to distinct foci on the flagellum and on the surface of the parasite. The conditional gene deletion of PNT1 induced blebs and pits on the cell surface and eventual cell death. Over-expression of PNT1, but not an active site mutant PNT1, was lethal, suggesting that active PNT1 peptidase is required for parasite survival. Overall, our data suggests that PNT1 is an essential gene and one of a number of cysteine peptidases that are potential drug targets in Leishmania.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2019.08.015DOI Listing

Publication Analysis

Top Keywords

cysteine peptidases
20
gene deletion
16
drug targets
12
pnt1
9
leishmania mexicana
8
peptidases potential
8
potential drug
8
targets leishmania
8
number cysteine
8
clan family
8

Similar Publications

Characterization of the host specificity of the SH3 cell wall binding domain of the staphylococcal phage 88 endolysin.

Arch Microbiol

January 2025

Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.

Bacteriophages produce endolysins at the end of the lytic cycle, which are crucial for lysing the host cells and releasing virion progeny. This lytic feature allows endolysins to act as effective antimicrobial alternatives when applied exogenously. Staphylococcal endolysins typically possess a modular structure with one or two enzymatically active N-terminal domains (EADs) and a C-terminal cell wall binding domain (CBD).

View Article and Find Full Text PDF

Introduction: Periodontitis is associated with rheumatoid arthritis (RA). One hypothesis posits that this connection arises from the formation of autoantibodies against citrullinated proteins (ACPA) in inflamed gums, possibly triggered by . We previously demonstrated an increased antibody response to arginine gingipains (anti-Rgp IgG), not only in individuals with severe periodontitis compared to controls, but in RA versus controls, with an association to ACPA.

View Article and Find Full Text PDF

The cysteine/arginine (Cys/Arg) branch of the N-degron pathway controls the stability of certain proteins with methionine (Met)-Cys N-termini, initiated by Met cleavage and Cys oxidation. In seeding plants, target proteins include the Group VII Ethylene Response Factors, which initiate adaptive responses to low oxygen (hypoxic) stress, as well as Vernalization 2 (VRN2) and Little Zipper 2 (ZPR2), which are involved in responses to endogenous developmental hypoxia. It is essential that these target proteins are only degraded by the N-degron pathway under the appropriate physiological conditions.

View Article and Find Full Text PDF

Enterovirus-D68 (EV68) continues to present as a global health issue causing respiratory illness and outbreaks associated with long-lasting neurological disease, with no antivirals or specific treatment options. The development of antiviral therapeutics, such as small-molecule inhibitors that target conserved proteins like the enteroviral 3C protease, remains to be achieved. While various 3C inhibitors have been investigated, their design does not consider the potential emergence of drug resistance mutations.

View Article and Find Full Text PDF

Various Options for Covalent Immobilization of Cysteine Proteases-Ficin, Papain, Bromelain.

Int J Mol Sci

January 2025

Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia.

This study explores various methods for the covalent immobilization of cysteine proteases (ficin, papain, and bromelain). Covalent immobilization involves the formation of covalent bonds between the enzyme and a carrier or between enzyme molecules themselves without a carrier using a crosslinking agent. This process enhances the stability of the enzyme and allows for the creation of preparations with specific and controlled properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!