AI Article Synopsis

  • - The study investigated how cold atmospheric pressure plasma (CAPP) jet affects the growth, germination, and adherence of the fungus Trichophyton rubrum, which causes nail infections.
  • - Laboratory tests showed that exposing T. rubrum to plasma jet for 10 and 15 minutes completely stopped its mycelial growth and significantly reduced its ability to germinate and infect nail samples.
  • - Biochemical analysis confirmed these findings, indicating that a single 15-minute exposure to CAPP is a potentially effective treatment for fungal nail infections caused by T. rubrum.

Article Abstract

This study aimed to evaluate the effects of cold atmospheric pressure plasma (CAPP) jet on Trichophyton rubrum growth, germination and adherence to nail. The effects of plasma jet on T. rubrum conidia germination and on mycelial growth were evaluated by in vitro assays. An ex vivo nail infection model was used to evaluate the effects on conidia adherence and infection. Biochemical analyses of nail fragments exposed or not to CAPP were performed by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Plasma jet exposure for 10 and 15 min completely inhibited mycelial growth after only one exposure. Fifteen minutes of exposure could reduce conidia germination in suspension. Fungal suspensions exposed to plasma jet for 10 and 15 min were not able to infect nail specimens. These results were corroborated by ATR-FTIR analyses of nail fragments. In conclusion, single exposure to CAPP for 15 min was able to inhibit fungal growth, adherence and infection capacity. The results suggest that cold atmospheric plasma jet can be a promising alternative for the treatment of onychomycoses caused by T. rubrum.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11046-019-00375-2DOI Listing

Publication Analysis

Top Keywords

plasma jet
20
cold atmospheric
12
adherence infection
12
atmospheric pressure
8
pressure plasma
8
trichophyton rubrum
8
infection capacity
8
evaluate effects
8
conidia germination
8
mycelial growth
8

Similar Publications

AC Plasmas Directly Excited in Liquid-Phase Hydrocarbons for H and Unsaturated C Hydrocarbon Production.

J Am Chem Soc

December 2024

Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States.

AC plasmas directly excited within liquid hydrocarbons were investigated for the production of hydrogen and unsaturated C hydrocarbon in a recirculating liquid "jet" flow configuration. Arc discharges were excited at two different frequencies (60 Hz and 17.3 kHz) in C-C hydrocarbons (hexane, cyclohexane, benzene, toluene, and xylene) to produce H, CH, CH, and CH, along with liquid and solid carbon byproducts.

View Article and Find Full Text PDF

The Potential of a Novel Cold Atmospheric Plasma Jet as a Feasible Therapeutic Strategy for Gingivitis-A Cell-Based Study.

Cells

November 2024

Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050657 Bucharest, Romania.

Due to its antimicrobial, anti-inflammatory and pro-healing properties, the application of cold atmospheric plasma (CAP) has emerged as a new and promising therapeutic strategy in various fields of medicine, including general medicine and dentistry. In this light, the aim of the present study was to investigate the effects of a homemade plasma jet on the cellular behaviour of two important cell types involved in gingivitis, namely gingival fibroblasts (HGF-1 cell line) and macrophages (RAW 264.7 cell line), by the direct application of CAP in different experimental conditions.

View Article and Find Full Text PDF

Enhancement of dewatering performance and effective degradation of petroleum hydrocarbons in biological oily sludge using atmospheric pressure plasma jet.

Bioresour Technol

December 2024

Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

The presence of petroleum hydrocarbon components (PHCs) in biological oily sludge increases the toxicity of the sludge and makes dewatering even more difficult. In this study, an atmospheric pressure plasma jet (APPJ) technology was used for treating biological oily sludge. The results showed that under specific conditions-a sludge/water ratio of 1:100, a discharge power of 440 W, and a 60-min treatment-the degradation rate of PHCs reached 36.

View Article and Find Full Text PDF

Massive material injections in the JET tokamak have been observed to substantially affect resistive bolometer measurements, resulting in a spurious radiated power signal proportional to the quantity injected and reaching up to 8 MW. These bolometers are calibrated and designed to operate in near vacuum but certain scenarios requiring large gas injections can push the neutral pressure past nominal values. This study demonstrates that the bolometry measurement can be affected at neutral pressures above 0.

View Article and Find Full Text PDF

Plasma processed Zn fortification: The next generation sustainable technology for the improvement of agronomic traits of paddy.

Heliyon

November 2024

Plasma Science and Technology Lab, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh.

Article Synopsis
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!