Background: Mutations in minor spliceosome components such as U12 snRNA (cerebellar ataxia) and U4atac snRNA (microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1)) result in tissue-specific symptoms. Given that the minor spliceosome is ubiquitously expressed, we hypothesized that these restricted phenotypes might be caused by the tissue-specific regulation of the minor spliceosome targets, i.e. minor intron-containing genes (MIGs). The current model of inefficient splicing is thought to apply to the regulation of the ~ 500 MIGs identified in the U12DB. However this database was created more than 10 years ago. Therefore, we first wanted to revisit the classification of minor introns in light of the most recent reference genome. We then sought to address specificity of MIG expression, minor intron retention, and alternative splicing (AS) across mouse and human tissues.
Results: We employed position-weight matrices to obtain a comprehensive updated list of minor introns, consisting of 722 mouse and 770 human minor introns. These can be found in the Minor Intron DataBase (MIDB). Besides identification of 99% of the minor introns found in the U12DB, we also discovered ~ 150 new MIGs. We then analyzed the RNAseq data from eleven different mouse tissues, which revealed tissue-specific MIG expression and minor intron retention. Additionally, many minor introns were efficiently spliced compared to their flanking major introns. Finally, we identified several novel AS events across minor introns in both mouse and human, which were also tissue-dependent. Bioinformatics analysis revealed that several of the AS events could result in the production of novel tissue-specific proteins. Moreover, like the major introns, we found that these AS events were more prevalent in long minor introns, while retention was favoured in shorter introns.
Conclusion: Here we show that minor intron splicing and AS across minor introns is a highly organised process that might be regulated in coordination with the major spliceosome in a tissue-specific manner. We have provided a framework to further study the impact of the minor spliceosome and the regulation of MIG expression. These findings may shed light on the mechanism underlying tissue-specific phenotypes in diseases associated with minor spliceosome inactivation. MIDB can be accessed at https://midb.pnb.uconn.edu .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6717393 | PMC |
http://dx.doi.org/10.1186/s12864-019-6046-x | DOI Listing |
J Nutr Biochem
December 2024
Research Group Nutrigenomics of Obesity and Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany; Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, Brandenburg, Germany. Electronic address:
Alternative splicing contributes to diversify the cellular protein landscape, but aberrant splicing is implicated in many diseases. To which extent mis-splicing contributes to insulin resistance as the causal defect of type 2 diabetes and whether this can be reversed by lifestyle interventions is largely unknown. Therefore, RNA sequencing data from skeletal muscle and adipose tissue of diabetes-susceptible NZO mice treated with or without intermittent fasting and of healthy C57BL/6J mice subjected to exercise were analyzed for alternative splicing differences using Whippet and rMATS.
View Article and Find Full Text PDFBiochem Genet
December 2024
Department of Biochemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
Hypothyroidism is the most prevalent thyroid disorder and leads to adverse effects on the human body. Serum thyroid stimulating hormone (TSH) values have been related to polymorphisms in multiple genes that may be involved in the regulation of thyroid function. The single nucleotide polymorphism (SNP) rs2046045 is situated in the intron region of the phosphodiesterase 8B (PDE8B) gene, which encodes a high-affinity cyclic adenosine monophosphate (cAMP)-specific phosphodiesterase widely expressed in thyroid tissue.
View Article and Find Full Text PDFTanaffos
January 2024
Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Background: Recently, genetic mutations in surfactant protein C (SFTPC) have been linked to diffuse parenchymal lung diseases (DPLD). The present study investigated mutations among Iranian patients with DPLD for the first time.
Materials And Methods: In this study, we examined 28 patients diagnosed with DPLD.
Int J Mol Sci
November 2024
Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.
Opioid use disorder (OUD) affects millions of people worldwide. While it is known that OUD originates from many factors, including social and environmental factors, the role of genetic variants in developing the disease has also been reported. This study aims to investigate the genetic variants associated with the risk of developing OUD upon exposure.
View Article and Find Full Text PDFPLoS Genet
December 2024
Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France.
Taybi-Linder syndrome (TALS) is a rare autosomal recessive disorder characterized by severe microcephaly with abnormal gyral pattern, severe growth retardation and bone abnormalities. It is caused by pathogenic variants in the RNU4ATAC gene. Its transcript, the small nuclear RNA U4atac, is involved in the excision of ~850 minor introns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!