The theoretical study of open quantum systems strongly coupled to a vibrational environment remains computationally challenging due to the strongly non-Markovian characteristics of the dynamics. We study this problem in the case of a molecular dimer of the organic semiconductor tetracene, the exciton states of which are strongly coupled to a few hundreds of molecular vibrations. To do so, we employ a previously developed tensor network approach, based on the formalism of matrix product states. By analyzing the entanglement structure of the system wavefunction, we can expand it in a tree tensor network state, which allows us to perform a fully quantum mechanical time evolution of the exciton-vibrational system, including the effect of 156 molecular vibrations. We simulate the dynamics of hot states, i.e., states resulting from excess energy photoexcitation, by constructing various initial bath states, and show that the exciton system indeed has a memory of those initial configurations. In particular, the specific pathway of vibrational relaxation is shown to strongly affect the quantum coherence between exciton states in time scales relevant for the ultrafast dynamics of application-relevant processes such as charge transfer. The preferential excitation of low-frequency modes leads to a limited number of relaxation pathways, thus "protecting" quantum coherence and leading to a significant increase in the charge transfer yield in the dimer structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5115239 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!