A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Insights on heterogeneity in blinking mechanisms and non-ergodicity using sub-ensemble statistical analysis of single quantum-dots. | LitMetric

Photo-luminescence (P-L) intermittency (or blinking) in semiconductor nanocrystals (NCs), a phenomenon ubiquitous to single-emitters, is generally considered to be temporally random intensity fluctuations between "bright" ("On") and "dark" ("Off") states. However, individual quantum-dots (QDs) rarely exhibit such telegraphic signals, and yet, a vast majority of single-NC blinking data are analyzed using a single fixed threshold which generates binary trajectories. Furthermore, while blinking dynamics can vary dramatically over NCs in the ensemble, the extent of diversity in the exponents (m) of single-particle On-/Off-time distributions (P(t)), often used to validate mechanistic models of blinking, remains unclear due to a lack of statistically relevant data sets. Here, we subclassify an ensemble of QDs based on the emissivity of each emitter and subsequently compare the (sub)ensembles' behaviors. To achieve this, we analyzed a large number (>1000) of blinking trajectories for a model system, Mn doped ZnCdS QDs, which exhibits diverse blinking dynamics. An intensity histogram dependent thresholding method allowed us to construct distributions of relevant blinking parameters (such as m). Interestingly, we find that single QD P(t)s follow either truncated power law or power law, and their relative proportion varies over subpopulations. Our results reveal a remarkable variation in m amongst as well as within subensembles, which implies multiple blinking mechanisms being operational amongst various QDs. We further show that the m obtained via cumulative single-particle P(t) is distinct from the weighted mean value of all single-particle m, evidence for the lack of ergodicity. Thus, investigation and analyses of a large number of QDs, albeit for a limited time span of a few decades, are crucial to characterize the spatial heterogeneity in possible blinking mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5095870DOI Listing

Publication Analysis

Top Keywords

blinking mechanisms
12
blinking
10
heterogeneity blinking
8
blinking dynamics
8
large number
8
power law
8
qds
5
insights heterogeneity
4
mechanisms non-ergodicity
4
non-ergodicity sub-ensemble
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!