Importance of Virulence Factors for the Persistence of Oral Bacteria in the Inflamed Gingival Crevice and in the Pathogenesis of Periodontal Disease.

J Clin Med

Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden.

Published: August 2019

Periodontitis is a chronic inflammation that develops due to a destructive tissue response to prolonged inflammation and a disturbed homeostasis (dysbiosis) in the interplay between the microorganisms of the dental biofilm and the host. The infectious nature of the microbes associated with periodontitis is unclear, as is the role of specific bacterial species and virulence factors that interfere with the host defense and tissue repair. This review highlights the impact of classical virulence factors, such as exotoxins, endotoxins, fimbriae and capsule, but also aims to emphasize the often-neglected cascade of metabolic products (e.g., those generated by anaerobic and proteolytic metabolism) that are produced by the bacterial phenotypes that survive and thrive in deep, inflamed periodontal pockets. This metabolic activity of the microbes aggravates the inflammatory response from a low-grade physiologic (homeostatic) inflammation (i.e., gingivitis) into more destructive or tissue remodeling processes in periodontitis. That bacteria associated with periodontitis are linked with a number of systemic diseases of importance in clinical medicine is highlighted and exemplified with rheumatoid arthritis, The unclear significance of a number of potential "virulence factors" that contribute to the pathogenicity of specific bacterial species in the complex biofilm-host interaction clinically is discussed in this review.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6780532PMC
http://dx.doi.org/10.3390/jcm8091339DOI Listing

Publication Analysis

Top Keywords

virulence factors
12
destructive tissue
8
associated periodontitis
8
specific bacterial
8
bacterial species
8
factors persistence
4
persistence oral
4
oral bacteria
4
bacteria inflamed
4
inflamed gingival
4

Similar Publications

Screening a library of temperature-sensitive mutants to identify secretion factors in .

J Bacteriol

January 2025

Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA.

Protein secretion is an essential cell process in bacteria, required for cell envelope biogenesis, export of virulence factors, and acquisition of nutrients, among other important functions. In the Sec secretion pathway, signal peptide-bearing precursors are recognized by the SecA ATPase and pushed across the membrane through a translocon channel made of the proteins SecY, SecE, and SecG. The Sec pathway has been extensively studied in the model organism , but the Sec pathways of other bacteria such as the human pathogen differ in important ways from this model.

View Article and Find Full Text PDF

Unlabelled: Type IV pili (T4P) are important virulence factors that allow bacteria to adhere to and rapidly colonize their hosts. T4P are primarily composed of major pilins that undergo cycles of extension and retraction and minor pilins that initiate pilus assembly. Bacteriophages use T4P as receptors and exploit pilus dynamics to infect their hosts.

View Article and Find Full Text PDF

spp. in neonatal sepsis: an urgent global threat.

Front Antibiot

September 2024

Institute of Infection & Immunity, St George's, University of London, London, United Kingdom.

Neonatal sepsis causes substantial morbidity and mortality, the burden of which is carried by low-income countries (LICs). The emergence of multidrug-resistant pathogens in vulnerable neonatal populations poses an urgent threat to infant survival. spp.

View Article and Find Full Text PDF

Introduction: This study aimed to understand the origin and to explain the maintenance of extended-spectrum β-lactamase (ESBL) isolated from food-producing animals in a third-generation cephalosporin (3GC)-free farm.

Methods: Culture and molecular approaches were used to test molecules other than 3GC such as antibiotics (tetracycline and oxytetracycline), antiparasitics (ivermectin, flumethrin, fenbendazol, and amitraz), heavy metal [arsenic, HNO, aluminum, HNO, cadmium (CdSO), zinc (ZnCl), copper (CuSO), iron (FeCl), and aluminum (AlSO)], and antioxidant (butylated hydroxytoluene) as sources of selective pressure. Whole-genome sequencing using short read (Illumina™) and long read (Nanopore™) technologies was performed on 34 genomes.

View Article and Find Full Text PDF

ATP-binding cassette (ABC) transporters: structures and roles in bacterial pathogenesis.

J Zhejiang Univ Sci B

October 2024

Department of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.

Adenosine triphosphate (ATP)-binding cassette (ABC) transporter systems are divided into importers and exporters that facilitate the movement of diverse substrate molecules across the lipid bilayer, against the concentration gradient. These transporters comprise two highly conserved nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Unlike ABC exporters, prokaryotic ABC importers require an additional substrate-binding protein (SBP) as a recognition site for specific substrate translocation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!