A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reductive dissolution of jarosite by a sulfate reducing bacterial community: Secondary mineralization and microflora development. | LitMetric

Reductive dissolution of jarosite by a sulfate reducing bacterial community: Secondary mineralization and microflora development.

Sci Total Environ

School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China. Electronic address:

Published: November 2019

Jarosite is an iron-hydroxysulfate mineral commonly found in acid mine drainage (AMD). Given its strong adsorption capacity and its ability to co-precipitation with heavy metals, jarosite is considered a potent scavenger of contaminants in AMD-impacted environments. Sulfate-reducing bacteria (SRB) play an important role in the reductive dissolution of jarosite; however, the mechanism involved has yet to be elucidated. In this study, an indigenous SRB community enriched from the Dabaoshan mine area (Guangdong, China) was employed to explore the mechanism of the microbial reduction of jarosite. Different cultures, with or without dissolved sulfate and the physical separation of jarosite from bacteria by dialysis bags, were examined. Results indicate that the reduction of jarosite by SRB occurred via an indirect mechanism. In systems with dissolved sulfate, lactate was incompletely oxidized to acetate coupled with the reduction of SO to S, which subsequently reduced the Fe in jarosite, forming secondary minerals including vivianite, mackinawite and pyrite. In systems without dissolved sulfate, jarosite dissolution occurred prior to reduction, and similar secondary minerals formed as well. Extracellular polymeric substances secreted by SRB appeared to facilitate the release of sulfate from jarosite. Structural sulfate in the solid phase of jarosite may not be available for SRB respiration. Although direct contact between SRB and jarosite is not necessary for mineral reduction, wrapping jarosite into dialysis bags suppressed the reduction to a certain extent. Microbial community composition differed in direct contact treatments and physical separation treatments. Physical separation of the SRB community from jarosite mineral supported the growth of Citrobacter, while Desulfosporosinus dominated in direct contact treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.06.483DOI Listing

Publication Analysis

Top Keywords

jarosite
14
dissolved sulfate
12
physical separation
12
direct contact
12
reductive dissolution
8
dissolution jarosite
8
srb community
8
reduction jarosite
8
dialysis bags
8
jarosite srb
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!