Chromatographic editing enhances natural product discovery.

J Pharm Biomed Anal

Department of Chemistry, University of South Florida, 4202 E Fowler Ave., Tampa, FL, 33620, United States. Electronic address:

Published: November 2019

Fungi are known for their diverse biologically active secondary metabolites, compounds that have provided the basis for many landmark therapeutics in the last century. Due to ease of collection and culturing, the existing fungal chemical literature is vast, and fungal natural product isolation can often be hindered by the numerous nuisance and pan-toxic compounds that many strains produce. Dereplication efforts, aimed at identifying such compounds early in the purification, are imperative to reduce time and expense of rediscovery of known metabolites. The common practice of dereplication then deprioritizes samples containing nuisance compounds and often excludes them from the drug discovery workflow. We have implemented a two-step dereplication protocol that uses tandem mass spectrometry to identify nuisance compounds, followed by mass-directed chromatographic editing to remove them while leaving the remaining 'edited extract' in the drug discovery workflow. This two-step strategy facilitates rapid and more accurate evaluation of the chemical potential of high-throughput extract screening campaigns by consideration of bioactivity beyond that triggered by known metabolites. We demonstrate the isolation of a new natural product antibiotic from an otherwise toxic extract using the technique.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6800021PMC
http://dx.doi.org/10.1016/j.jpba.2019.112831DOI Listing

Publication Analysis

Top Keywords

natural product
12
chromatographic editing
8
nuisance compounds
8
drug discovery
8
discovery workflow
8
compounds
5
editing enhances
4
enhances natural
4
product discovery
4
discovery fungi
4

Similar Publications

Background: Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver disease (NAFLD) characterized by damage and inflammation of hepatocytes. Some medicinal plants have shown antioxidant and anti-inflammatory effects on liver cells. We aimed to investigate the hepatoprotective effect of Heptex® capsules containing 200 mg of Dukung Anak (a powdered extract from aerial parts of Phyllanthus niruri) and 100 mg of Milk Thistle (a powdered extract from fruits of Silybum marianum) in patients with an apparent risk factor for NASH.

View Article and Find Full Text PDF

Engineering Saccharomyces cerevisiae for medical applications.

Microb Cell Fact

January 2025

Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany.

Background: During the last decades, the advancements in synthetic biology opened the doors for a profusion of cost-effective, fast, and ecologically friendly medical applications priorly unimaginable. Following the trend, the genetic engineering of the baker's yeast, Saccharomyces cerevisiae, propelled its status from an instrumental ally in the food industry to a therapy and prophylaxis aid.

Main Text: In this review, we scrutinize the main applications of engineered S.

View Article and Find Full Text PDF

Polyphenolic plant compounds possess nutritional and pro-healthy potential, reducing the risk of auto-inflammatory and neoplastic diseases. However, their interference with the progression of thyroid gland dysfunctions has remained largely unaddressed. For this purpose, we combined the analyses of phenolic content and antioxidative activity with the thyroid peroxidase (TPO), lipoxygenase (LOX), xanthine oxidase (XO) and cyclooxygenase-2 (COX-2) activity assays, isobolographic approach and the estimation of thyroid cancer cells' proliferation and motility in vitro.

View Article and Find Full Text PDF

Development of a novel multi-epitope subunit mRNA vaccine candidate to combat Acinetobacter baumannii.

Sci Rep

January 2025

Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.

Acinetobacter baumannii, an opportunistic bacterium prevalent in various environment, is a significant cause of nosocomial infections in ICUs. As the causative agent of pneumonia, septicemia, and meningitis, A. baumannii typically exhibits multidrug resistance and is associated with poor prognosis, thus led to a challenge for researchers in developing new treatment and prevention methods.

View Article and Find Full Text PDF

The ongoing emergence of SARS-CoV-2 variants, combined with antigen exposures from different waves and vaccinations, poses challenges in updating COVID-19 vaccine antigens. We collected 206 sera from individuals with vaccination-only, hybrid immunity, and single or repeated omicron post-vaccination infections (PVIs), including non-JN.1 and JN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!