Dissolved organic matter (DOM) in river water dynamically changes with respect to its major sources during heavy rain events. However, there has been no established tool to estimate the relative contributions of different organic sources to river water DOM. In this study, the evolution in the contributions of ten different organic matter (OM) sources to storm water DOM was explored with a selected urban river, the Geumho River in South Korea, during storm events via an end-member mixing analysis (EMMA) based on fluorescence indices and Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). The OM source materials included treated effluent, road runoff, groundwater, topsoil, deep soil, leaves, reeds, riparian plants, attached algae, and suspended algae. The EMMA results provided quantitative estimates of the variations in the dominant OM sources with the progress of storms. Treated effluent was the prevailing source at the beginning period of the storm, while topsoil, leaves, riparian plants, and groundwater predominated during and after the peak period. The fluorescence indices-based evaluation was consistent with the statistical comparison of the molecular formulas derived from FT-ICR-MS conducted on the ten potential OM sources and the storm samples. The observed variations in the OM sources agreed with the typical characteristics of urban rivers in connection with anthropogenic inputs and the impact of surrounding impervious surfaces. This study demonstrates the application of intuitive and facile tools in estimating the relative impacts of OM sources in urban watersheds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2019.115006 | DOI Listing |
Sci Total Environ
January 2025
China National Environmental Monitoring Centre, Beijing 100012, China.
The riverine dissolved organic matter (DOM) pool constitutes the largest and most dynamic organic carbon reservoir within inland aquatic systems. Human activities significantly alter the distribution of organic matter (OM) in rivers, thereby affecting the availability of DOM. However, the impact of total suspended solids (TSS) on DOM under anthropogenic influence remains insufficiently elucidated.
View Article and Find Full Text PDFSci Total Environ
January 2025
College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China. Electronic address:
The increasing frequency of cyanobacterial blooms, particularly those induced by Microcystis aeruginosa (M. aeruginosa), poses severe economic, ecological and health challenges due to the production of microcystins (MCs). Environmental parameters such as light and nutrient availability influence MCs production, while the role of dissolved organic matter (DOM) photochemical processes in regulating these remains unclear.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Chemistry, Physics, Environmental and Soil Sciences, University of Lleida - AGROTECNIO-CERCA Center, Rovira Roure 191, 25198 Lleida, Spain.
There is limited research on the influence of environmental variables on the interactions of biodegradable microplastics with chromium. This study reports the results of adsorption experiments with Cr and poly(lactic acid) (PLA) in synthetic aqueous solutions. It addresses the influence of the initial oxidation state, Cr(III) or Cr(VI), the effects of UV irradiation and the presence of organic matter.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China. Electronic address:
The interactions between microplastic-derived dissolved organic matter (MPs-DOM) and heavy metals (Cu, Pb, and Cd) regulate the complex environmental transport behavior of pollutants in terrestrial and aquatic environments. In this study, fluorescence excited emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC) and electrospray ionization coupled Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) were employed to investigate the complexation mechanism of MPs-DOM with heavy metals, as well as the effects of different environmental occurrences of MPs-DOM on the transport behaviors of heavy metals in saturated porous medium. The findings demonstrated that MPs-DOM, particularly humic-like substances containing aromatic structures and various oxygen functional groups, could form stable complexes with heavy metals.
View Article and Find Full Text PDFSmall
January 2025
Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
Conductive metal-organic frameworks (MOFs) are crystalline, intrinsically porous materials that combine remarkable electrical conductivity with exceptional structural and chemical versatility. This rare combination makes these materials highly suitable for a wide range of energy-related applications. However, the electrical conductivity in MOF-based devices is often limited by the presence of different types of structural disorder.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!