Transformation of tetracyclines induced by Fe(III)-bearing smectite clays under anoxic dark conditions.

Water Res

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China. Electronic address:

Published: November 2019

Smectite clays are widely found in subsurface soils and waters. Although they strongly sequester tetracyclines (TCs), little is known about their reactions with these antibiotics under dark anoxic conditions. This study investigated the interactions between TCs and Fe-bearing smectite clays and the influences of environmental factors. Fe-bearing smectite clays were shown to significantly induce the transformation of TCs, including tautomerization, dechlorination, and dehydration. Moreover, the adsorbed TCs reduced the structural Fe(III) in clay particles to structural Fe(II) through electron transfer. The transformation of TCs was more readily induced by smectite clays with a higher rather than a lower Fe content. Tetrahedral Fe(III), and distorted cis- or trans-octahedral Fe(III), were more reactive as an electron acceptor than cis-octahedral Fe(III), as observed on the Mössbauer and FTIR spectra. A lower pH facilitated the adsorption of TCs through dimethyl-amino, amide, and conjugated -OH functional groups and induced a higher rate of TCs transformation. The transformation of chlortetracycline (CTC) was faster than that of oxytetracycline or tetracycline (TTC) due to -Cl substitution. The major transformation CTC products included keto-CTC, epi-CTC, iso-CTC, anhydro-CTC and TTC. Mixtures of these transformed products were found to have a higher acute toxicity than their parent compounds to Photobacterium phosphoreum T3. Our study revealed several previously overlooked interactions between TCs and clay particles that could cause these antibiotics to become unstable in the subsurface environment, with negative effects on the soil-borne microbial community.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2019.114997DOI Listing

Publication Analysis

Top Keywords

smectite clays
20
tcs
8
interactions tcs
8
fe-bearing smectite
8
transformation tcs
8
clay particles
8
transformation
6
smectite
5
clays
5
transformation tetracyclines
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!