This study aims to induce antibacterial and superhydrophobic properties on the surface of thermoplastic polyurethane (TPU) sheets via an improved phase separation process through application of polyvinyl chloride (PVC) thin films. Porous PVC thin films were produced using different amounts of ethanol as nonsolvent. However, the created porosity was not sufficient to achieve superhydrophobicity. To improve the phase separation process, the silver phosphate nanoparticles were first synthesized and then added to the solution. According to scanning electron microscopy and X-ray photoelectron spectroscopy results, the nanoparticles were majorly localized at the bulk of PVC films. A direct relationship was found between the level of porosity and superhydrophobicity. An exceedingly high amount of nanoparticles had a deteriorating influence on porosity and superhydrophobicity. The optimum sample was found to be durable against liquids with different pH values. In contrast to the good resistance of superhydrophobic sample at elevated temperatures (80 °C), a sticky behavior was obtained upon exposure to 120 °C. The level of bacterial adhesion for the superhydrophobic sample was drastically declined (>99%) with respect to the pure PVC film in case of S. aureus and E. coli bacteria after an incubation time of 24 h. In conclusion, the hybrid of superhydrophobic behavior and an antibacterial material such as silver phosphate nanoparticles exhibited a promising potential in achieving antibacterial surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2019.110438 | DOI Listing |
Whole-body PET imaging is often hindered by respiratory motion during acquisition, causing significant degradation in the quality of reconstructed activity images. An additional challenge in PET/CT imaging arises from the respiratory phase mismatch between CT-based attenuation correction and PET acquisition, leading to attenuation artifacts. To address these issues, we propose two new, purely data-driven methods for the joint estimation of activity, attenuation, and motion in respiratory self-gated TOF PET.
View Article and Find Full Text PDFCellular chromatin displays heterogeneous structure and dynamics, properties that control diverse nuclear processes. Models invoke phase separation of conformational ensembles of chromatin fibers as a mechanism regulating chromatin organization . Here we combine biochemistry and molecular dynamics simulations to examine, at single base-pair resolution, how nucleosome spacing controls chromatin phase separation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France.
Metal-organic frameworks (MOFs) combined with polymers as hybrid materials offer numerous advantages such as enhanced performances through synergistic effects at their interface. The primary challenge in developing polymer/MOF hybrid matrix films is ensuring optimal dispersion and strong adhesion of crystalline MOFs to the polymer without aggregation, weak interaction, or phase separation. In this study, hierarchically porous UiO-66_NH/chitosan (ZrCSx-) films were designed by crystallizing UiO-66_NH within a chitosan (CS) skeleton.
View Article and Find Full Text PDFACS Nano
January 2025
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.
Synthetic single-wall carbon nanotubes (SWCNTs) contain various chiralities, which can be sorted by DNA. However, finding DNA sequences for this purpose mainly relies on trial-and-error methods. Predicting the right DNA sequences to sort SWCNTs remains a substantial challenge.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
Unveiling the nonlinear interactions between terahertz (THz) electromagnetic waves and free carriers in two-dimensional materials is crucial for the development of high-field and high-frequency electronic devices. Herein, we investigate THz nonlinear transport dynamics in a monolayer graphene/MoS heterostructure using time-resolved THz spectroscopy with intense THz pulses as the probe. Following ultrafast photoexcitation, the interfacial charge transfer establishes a nonequilibrium carrier redistribution, leaving free holes in the graphene and trapping electrons in the MoS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!