Computational approaches for inferring 3D conformations of chromatin from chromosome conformation capture data.

Methods

Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States. Electronic address:

Published: October 2020

Chromosome conformation capture (3C) and its variants are powerful experimental techniques for probing intra- and inter-chromosomal interactions within cell nuclei at high resolution and in a high-throughput, quantitative manner. The contact maps derived from such experiments provide an avenue for inferring the 3D spatial organization of the genome. This review provides an overview of the various computational methods developed in the past decade for addressing the very important but challenging problem of deducing the detailed 3D structure or structure population of chromosomal domains, chromosomes, and even entire genomes from 3C contact maps.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7044057PMC
http://dx.doi.org/10.1016/j.ymeth.2019.08.008DOI Listing

Publication Analysis

Top Keywords

chromosome conformation
8
conformation capture
8
contact maps
8
computational approaches
4
approaches inferring
4
inferring conformations
4
conformations chromatin
4
chromatin chromosome
4
capture data
4
data chromosome
4

Similar Publications

Nuclear DNA is organized into a compact three-dimensional (3D) structure that impacts critical cellular processes. High-throughput chromosome conformation capture (Hi-C) is the most widely used method for measuring 3D genome architecture, while linear epigenomic assays, such as ATAC-seq, DNase-seq, and ChIP-seq, are extensively employed to characterize epigenomic regulation. However, the integrative analysis of chromatin interactions and associated epigenomic regulation remains challenging due to the pairwise nature of Hi-C data, mismatched resolution between Hi-C and epigenomic assays, and inconsistencies among analysis tools.

View Article and Find Full Text PDF

Cis-regulatory elements bridge enhancers and gene promoters to control gene expression via distal DNA interaction and three-dimensional chromosomal conformation organization. The aberrant changes of cis-acting regulatory systems as one type of the epigenetic regulative ways may be connected with human genetic diseases. Klotho, as an antiaging protein, is selectively expressed in kidney tissues and plays a crucial role in preventing chronic kidney disease (CKD) and renal fibrosis.

View Article and Find Full Text PDF

Nucleosome is the basic structural unit of the genome. During processes like DNA replication and gene transcription, the conformation of nucleosomes undergoes dynamic changes, including DNA unwrapping and rewrapping, as well as histone disassembly and assembly. However, the wrapping characteristics of nucleosomes across the entire genome, including region-specificity and their correlation with higher-order chromatin organization, remains to be studied.

View Article and Find Full Text PDF

Precursors of microRNAs (pre-miRNAs) are less used in silico to mine miRNAs. This study developed PmiR-Select based on covariance models (CMs) to identify new pre-miRNAs, detecting conserved secondary structural features across RNA sequences and eliminating the redundancy. The pipeline preceded PmiR-Select filtered 20% plant pre-miRNAs (from 38589 to 8677) from miRBase.

View Article and Find Full Text PDF

Genomic instability is a hallmark of cancer and is a major driving force of tumorigenesis. A key manifestation of genomic instability is the formation of extrachromosomal DNAs (ecDNAs) - acentric, circular DNA molecules ranging from 50 kb to 5 Mb in size, distinct from chromosomes. Ontological studies have revealed that ecDNA serves as a carrier of oncogenes, immunoregulatory genes, and enhancers, capable of driving elevated transcription of its cargo genes and cancer heterogeneity, leading to rapid tumor evolution and therapy resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!