A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cumulative ROC curves for discriminating three or more ordinal outcomes with cutpoints on a shared continuous measurement scale. | LitMetric

Cumulative receiver operator characteristic (ROC) curve analysis extends classic ROC curve analysis to discriminate three or more ordinal outcome levels on a shared continuous scale. The procedure combines cumulative logit regression with a cumulative extension to the ROC curve and performs as expected with ternary (three-level) ordinal outcomes under a variety of simulated conditions (unbalanced data, proportional and non-proportional odds, areas under the ROC curve [AUCs] from 0.70 to 0.95). Simulations also compared several criteria for selecting cutpoints to discriminate outcome levels: the Youden Index, Matthews Correlation Coefficient, Total Accuracy, and Markedness. Total Accuracy demonstrated the least absolute percent-bias. Cutpoints computed from maximum likelihood regression parameters demonstrated bias that was often negligible. The procedure was also applied to publicly available data related to computer imaging and biomarker exposure science, yielding good to excellent AUCs, as well as cutpoints with sensitivities and specificities of commensurate quality. Implementation of cumulative ROC curve analysis and extension to more than three outcome levels are straightforward. The author's programs for ternary ordinal outcomes are publicly available.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6716631PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0221433PLOS

Publication Analysis

Top Keywords

roc curve
20
ordinal outcomes
12
curve analysis
12
outcome levels
12
cumulative roc
8
three ordinal
8
shared continuous
8
total accuracy
8
cumulative
5
roc
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!