Deposit-feeding sea cucumbers repeat ingestion of sediments and excretion of faeces daily and consequently increase bacterial abundance in sediments and promote organic matter mineralization. Such ecological roles are expected to be collaborative activities of sea cucumbers and the gut microbiota. Here, we performed a spatiotemporally broad 16S rRNA gene analysis using 109 samples from sea cucumber faeces and habitat sediments to explore potential contribution of their gut microbiota to the ecological roles. Most operational taxonomic units (OTUs) observed in the faecal samples were shared with the sediment samples, nevertheless faecal and sediment microbiota differed from each other in UniFrac analysis. Lower bacterial diversity and increased relative abundance of specific OTUs in the faecal microbiota strongly suggest selective enrichment of ingested sediment microbiota in their guts. Interestingly, representative faecal OTUs were more abundant in sea cucumber-populated sediments than in un-inhabited sediments, indicating bacteria selectively enriched in the guts were spread on ambient sediments via faeces. Moreover, the predicted microbial community metabolic potential showed a higher abundance of genes related to carbohydrate and xenobiotics metabolisms in faeces than in sediments. Our study suggests the repeated selective enrichment transforms ambient sediment microbial communities and maintains the host's ecological roles by promoting organic matter mineralization.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1758-2229.12791DOI Listing

Publication Analysis

Top Keywords

selective enrichment
12
sediment microbiota
12
ecological roles
12
repeated selective
8
sea cucumber
8
sea cucumbers
8
organic matter
8
matter mineralization
8
gut microbiota
8
sediments
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!