Indirect state-of-charge determination of all-solid-state battery cells by X-ray diffraction.

Chem Commun (Camb)

Battery and Electrochemistry Laboratory (BELLA), Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

Published: September 2019

Determining the state-of-charge of all-solid-state batteries via both ex situ and operando X-ray diffraction, rather than by electrochemical testing (may be strongly affected by electrically isolated/inactive material, irreversible side reactions, etc.), is reported. Specifically, we focus on bulk-type cells and use X-ray diffraction data obtained on a liquid electrolyte-based Li-ion cell as the reference standard for changes in lattice parameters with (de)lithiation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cc04453aDOI Listing

Publication Analysis

Top Keywords

x-ray diffraction
12
cells x-ray
8
indirect state-of-charge
4
state-of-charge determination
4
determination all-solid-state
4
all-solid-state battery
4
battery cells
4
diffraction determining
4
determining state-of-charge
4
state-of-charge all-solid-state
4

Similar Publications

The nonheme iron(II) complexes containing a fluoride anion, Fe(BNPAO)(F) () and [Fe(BNPAOH)(F)(THF)](BF) (), were synthesized and structurally characterized. Addition of dioxygen to either or led to the formation of a fluoride-bridged, dinuclear iron(III) complex [Fe(BNPAO)(F)(μ-F)] (), which was characterized by single-crystal X-ray diffraction, H NMR, and elemental analysis. An iron(II)(iodide) complex, Fe(BNPAO)(I) (), was prepared and reacted with O to give the mononuclear complex -Fe(BNPAO)(OH)(I) ().

View Article and Find Full Text PDF

With the applications of in situ X-ray diffraction (XRD), electrical - measurement, and ambient pressure hard X-ray photoelectron spectroscopy (AP-HAXPES), the characteristics of the topotactic phase transition of LaCoO (LCO) thin films are examined. XRD measurements show clear evidence of structural phase transition (SPT) of the LCO thin films from the perovskite (PV) LaCoO to the brownmillerite (BM) LaCoO phases through the intermediate LaCoO phase at a temperature of 350 °C under high-vacuum conditions, ∼10 mbar. The reverse SPT from BM to PV phases is also found under ambient pressure (>100 mbar) of air near 100 °C.

View Article and Find Full Text PDF

Sativene-Related Sesquiterpenoids with Phytotoxic and Plant-Promoting Activities from the Plant Pathogenic Fungus Based on a Molecular Networking Strategy.

J Agric Food Chem

December 2024

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China.

Sativene-related sesquiterpenoids including -sativene analogs are a large member of fungal secondary metabolites with phytotoxic and growth-promoting effects on different plants. In this report, a series of sativene-related sesquiterpenoids with diverse carbon skeletons (-, sativene/isosativene/-sativene/cyclosativene/-isosativene ring systems) were isolated from the plant pathogenic fungus based on a molecular networking strategy. The undescribed structures were elucidated based on NMR spectra, X-ray diffraction analysis, chemical derivation, and calculated electronic circular dichroism calculations.

View Article and Find Full Text PDF

Widespread geogenic uranium (U) contamination of Indian groundwaters is of serious concern; yet little is known of the dominant forms and release mechanisms of U in these aquifers. Interestingly, manganese (Mn)-rich aquifers, highly buffered by dissolved inorganic carbon (DIC) and saturated with rhodochrosite [MnCO], have shown low U ( View Article and Find Full Text PDF

The corrosion resistance of nickel-titanium nitride (Ni/TiN) composites is significantly influenced by the operation parameters during the jet pulse electrodeposition (JPE) process. The effect of current density, jet rate, TiN concentration, and duty cycle impact on the anti-corrosion property of Ni/TiN composites were investigated and optimized using the response surface method (RSM). After the optimization of the operation parameters, the corrosion current of Ni/TiN composites decreased from 9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!