Spectroscopic identification of monomeric methyl metaphosphate.

Dalton Trans

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China. and Department of Chemistry, Fudan University, Shanghai 200433, China.

Published: October 2019

Monomeric methyl metaphosphate (CHOPO), a highly electrophilic phosphorylating intermediate in chemical oligonucleotide synthesis, has been generated in the gas phase by high-vacuum flash pyrolysis (1000 K) of methyl 2-butenylphosphonate. In addition to the unambiguous characterization using IR spectroscopy in solid N-, Ar-, and Ne-matrices, the formation CHOPO in the photooxidation of the prototypical phosphinidene oxide CHPO by O with O-isotope scrambling has been observed in the solid N-matrix (15 K).

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9dt03367jDOI Listing

Publication Analysis

Top Keywords

monomeric methyl
8
methyl metaphosphate
8
spectroscopic identification
4
identification monomeric
4
metaphosphate monomeric
4
metaphosphate chopo
4
chopo highly
4
highly electrophilic
4
electrophilic phosphorylating
4
phosphorylating intermediate
4

Similar Publications

Chemical Constituents of the Deep-Sea-Derived Penicillium citrinum W22 and Their Ferroptosis Inhibitory Activity.

Chem Biodivers

January 2025

Hainan Pharmaceutical Research and Development Science Park, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China.

One new monomeric citrinin analog (1) and 42 known compounds (2-43) were isolated from Penicillium citrinum W22. The structure of 1 was determined by detailed analysis of the 1D and 2D nuclear magnetic resonance (NMR), HRESIMS, and time-dependent density functional theory (TD-DFT)-based electronic circular dichroism (ECD) calculation. Penicitrinol A (2) and methyl 2-(2-acetyl-3,5-dihydroxy-4,6-dimethylphenyl) acetate (11) significantly inhibited renin-angiotensin system-selective lethal 3 (RSL3)-induced ferroptosis with half maximal effective concentration (EC) values of 1.

View Article and Find Full Text PDF

Hexaanionic cyclophosphazenate ligands [(RN)PN] provide versatile platforms for the assembly of multinuclear metal arrays due to their multiple coordination sites and highly flexible ligand core structure. This work investigates the impact of incrementally increasing the steric demand of the ligand periphery on the coordination behavior of ethylzinc arrays. It shows that the increased congestion around the ligand sites is alleviated by progressive condensation with the elimination of diethylzinc.

View Article and Find Full Text PDF

Cloning, purification and characterization of a novel thermostable recombinant tannase from Galactobacillus timonensis.

Enzyme Microb Technol

December 2024

State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, China.

The exorbitant production costs associated with natural tannases pose a significant challenge to their widespread industrial utilization. Microbial expression systems provide a cost-effective method for enzyme production. In this study, a putative gene encoding the subtype B tannase (Gt-Tan) was cloned from Galactobacillus timonensis and expressed heterologously in Escherichia coli BL21 (DE3) cells.

View Article and Find Full Text PDF

The cat eye syndrome chromosome region candidate 2 (CECR2) protein is an epigenetic regulator involved in chromatin remodeling and transcriptional control. The CECR2 bromodomain (CECR2-BRD) plays a pivotal role in directing the activity of CECR2 through its capacity to recognize and bind acetylated lysine residues on histone proteins. This study elucidates the binding specificity and structural mechanisms of CECR2-BRD interactions with both histone and non-histone ligands, employing techniques such as isothermal titration calorimetry (ITC), nuclear magnetic resonance (NMR) spectroscopy, and a high-throughput peptide assay.

View Article and Find Full Text PDF

To investigate the influence of phthalocyanine aggregation on their photodynamic activity, a series of six cationic water-soluble zinc(II) phthalocyanines bearing from four to sixteen 4-((diethylmethylammonium)methyl)phenoxy substituents was synthesized. Depending on their structure, the phthalocyanines have different aggregation behaviors in phosphate buffer solutions ranging from fully assembled to monomeric states. Remarkably, independent of aggregation in buffer, very high photodynamic efficiencies against the tumor cell lines MCF-7 and MDA-MB-231 in the nanomolar range were found for all investigated phthalocyanine, and the IC(light) varied from 27 to 358 nM (3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!