Prostate cancer (PCa) is the second leading cause of death in men. Apart from androgen receptor, 5α-reductase has also been recognized as a potential target. In this study, a series of androst-17β-amide compounds have been designed and synthesized targeting both AR and 5α-reductase. Their anti-proliferation activities were evaluated in AR + cell line 22RV1 and AR - cell line PC-3. The results indicated that most of the synthesized compounds inhibited the testosterone-stimulated cell proliferation with good selectivity and safety. Among all the compounds, androst[3,2-c]pyrazole derivatives displayed the best inhibition activity comparable with flutamide. Moreover, most of the synthesized compounds displayed good 5α-reductase inhibitory activities with IC lower than 1 μM. The docking result of -AR indicated that AR was forced to expands its binding cavity and maintain an antagonistic conformation since the steric hindrance of impeded H12 transposition. Overall, compound can be identified as a potential dual 5α-reductase inhibitor and AR antagonist, which might be of therapeutic importance for PCa treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6735293PMC
http://dx.doi.org/10.1080/14756366.2019.1654469DOI Listing

Publication Analysis

Top Keywords

dual 5α-reductase
8
androgen receptor
8
synthesized compounds
8
compounds
5
5α-reductase
5
design synthesis
4
synthesis biological
4
biological evaluation
4
evaluation novel
4
novel androst-17β-amide
4

Similar Publications

Design, Synthesis, and Imaging of a Stable Xanthene-Based Dye with NIR-II Emission up to 1450 nm.

Anal Chem

January 2025

Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China.

The development of long-wavelength near-infrared II (NIR-II, 900-1700 nm) dyes is highly desirable but challenging. To achieve both red-shifted absorption/emission and superior imaging capabilities, a donor-acceptor-donor (D-A-D) xanthene core was strategically modified by extending π-conjugated double bonds and enhancing electron-donating properties. Two dyes named and were synthesized and exhibited notably red-shifted absorption/emission peaks at 942/1250 and 1098/1450 nm, respectively.

View Article and Find Full Text PDF

Studies of the evolution of language rely heavily on comparisons to nonhuman primates, particularly the gestural communication of nonhuman apes. Differences between human and ape gestures are largely ones of degree rather than kind. For example, while human gestures are more flexible, ape gestures are not inflexible.

View Article and Find Full Text PDF

Near-Infrared Photothermal Conversion by Isocorrole and Phlorin Derivatives.

Inorg Chem

January 2025

Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.

Photothermal therapy is a promising strategy for treating tumors and bacterial infections by using light irradiation to locally heat tissues. Metalloisoporphyrinoid materials have been investigated for their use as singlet oxygen photosensitizers for photodynamic therapy but remain underexplored as photothermal agents. Recently, two metallophlorin and two metalloisocorrole materials were found to have strong near-infrared absorbance, with low photoluminescent quantum yields, suggesting high rates of nonradiative decay.

View Article and Find Full Text PDF

Dual modes of DNA N-methyladenine maintenance by distinct methyltransferase complexes.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.

Stable inheritance of DNA N-methyladenine (6mA) is crucial for its biological functions in eukaryotes. Here, we identify two distinct methyltransferase (MTase) complexes, both sharing the catalytic subunit AMT1, but featuring AMT6 and AMT7 as their unique components, respectively. While the two complexes are jointly responsible for 6mA maintenance methylation, they exhibit distinct enzymology, DNA/chromatin affinity, genomic distribution, and knockout phenotypes.

View Article and Find Full Text PDF

Hypochlorous Acid-Activatable NIR Fluorescence/Photoacoustic Dual-Modal Probe with High Signal-to-Background Ratios for Imaging of Liver Injury and Plasma Diagnosis of Sepsis.

ACS Sens

January 2025

Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.

Hypochlorous acid can be employed as a biomarker for blood infection (such as sepsis) and tissue damage (such as drug-induced liver injury, DILI), and the diagnosis of tissue damage or blood infection can be achieved through the detection of hypochlorous acid in relevant biological samples. Considering the complex environment and the diverse interferences in living organisms and blood plasma, developing new detection methods for HClO with high signal-to-background ratios is particularly important, and it can improve the accuracy of detection and quality of imaging based on a higher contrast, which makes the detection of HClO clearer and more accurate. Here, based on the advantages of the NIR fluorescence/photoacoustic dual-modal probe, we reported a hypochlorous acid-activatable NIR fluorescence/photoacoustic dual-modal probe (NIRF-PA-HClO) based on the spirolactam ring-opening strategy in this paper.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!