The promising tin perovskite solar cells (PSCs) suffer from the oxidation of Sn to Sn , leading to a disappointing conversion efficiency along with poor stability. In this work, phenylethylammonium bromide (PEABr) was employed to form an ultrathin, low-dimensional perovskite layer on the surface of the FASnI (FA=formamidinium) absorber film to improve the interface of perovskite/PCBM ([6,6]-phenyl-C -butyricacid methyl) in the inverted planar device structure of the ITO (indium-doped tin oxide)/PEDOT:PSS [poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate]/perovskite/[6,6]-phenyl-C -butyricacid methyl (PCBM)/BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) electrode. The device efficiency was enhanced from 4.77 to 7.86 % by this PEABr treatment. A series of characterizations proved that this modification could improve the crystallinity of the FASnI perovskite by incorporating Br and forming an ultrathin, low-dimensional perovskite layer at the interface, which led to the effective suppression of Sn oxidation, improved band level alignment, and decreased defect density. These effects contributed to the clear enhancement of conversion efficiency. Moreover, this treatment also led to remarkably enhanced device stability, with approximately 80 % of the initial efficiency retained after 350 h light soaking, whereas the control device failed within 140 h. This work deepens our understanding of the suppression effect of PEABr on the oxidation of Sn and paves a new way to fabricate promising tin halide PSCs by facile interface engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.201902000 | DOI Listing |
Nanoscale
January 2025
State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China.
Chirality, a pervasive phenomenon in nature, is widely studied across diverse fields including the origins of life, chemical catalysis, drug discovery, and physical optoelectronics. The investigations of natural chiral materials have been constrained by their intrinsically weak chiral effects. Recently, significant progress has been made in the fabrication and assembly of low-dimensional micro and nanoscale chiral materials and their architectures, leading to the discovery of novel optoelectronic phenomena such as circularly polarized light emission, spin and charge flip, advocating great potential for applications in quantum information, quantum computing, and biosensing.
View Article and Find Full Text PDFSci Adv
January 2025
Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen 361005, P. R. China.
The utilization of low-dimensional perovskites (LDPs) as interlayers on three-dimensional (3D) perovskites has been regarded as an efficient strategy to enhance the performance of perovskite solar cells. Yet, the formation mechanism of LDPs and their impacts on the device performance remain elusive. Herein, we use dimensional engineering to facilitate the controllable growth of 1D and 2D structures on 3D perovskites.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
South China Agricultural University, College of Materials and Energy, CHINA.
Carbon-based perovskite solar cells (C-PSCs) have the advantages of high stability and low cost, but their mean efficiency has become an obstacle to commercialization. Defects, which are widely distributed on the surface and bulk of films, are an important factor in C-PSCs for low efficiency. The conventional post-treatment method through forming a low-dimensional (LD) perovskite layer usually fails in manipulating the bulk defects.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
The addition of organic cationic iodides to form low-dimensional perovskite is an essential strategy for defect passivation in perovskite solar cells (PSCs). Specially, the 2D/3D perovskite structure can combine the stability of 2D perovskite and the high charge transport performance of 3D perovskite. Here, we introduced phenylammonium hydroiodide salts with different alkyl chain lengths into PSCs precursor solution to research the influence on formation of perovskite thin films and the photovoltaic performance of PSCs.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.
The growing potential of low-dimensional metal-halide perovskites as conversion-type cathode materials is limited by electrochemically inert B-site cations, diminishing the battery capacity and energy density. Here, we design a benzyltriethylammonium tellurium iodide perovskite, (BzTEA)TeI, as the cathode material, enabling X- and B-site elements with highly reversible chalcogen- and halogen-related redox reactions, respectively. The engineered perovskite can confine active elements, alleviate the shuttle effect and promote the transfer of Cl on its surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!