Objective: Developmental epileptic encephalopathies (DEEs) are genetically heterogeneous severe childhood-onset epilepsies with developmental delay or cognitive deficits. In this study, we explored the pathogenic mechanisms of DEE-associated de novo mutations in the CACNA1A gene.
Methods: We studied the functional impact of four de novo DEE-associated CACNA1A mutations, including the previously described p.A713T variant and three novel variants (p.V1396M, p.G230V, and p.I1357S). Mutant cDNAs were expressed in HEK293 cells, and whole-cell voltage-clamp recordings were conducted to test the impacts on Ca 2.1 channel function. Channel localization and structure were assessed with immunofluorescence microscopy and three-dimensional (3D) modeling.
Results: We find that the G230V and I1357S mutations result in loss-of-function effects with reduced whole-cell current densities and decreased channel expression at the cell membrane. By contrast, the A713T and V1396M variants resulted in gain-of-function effects with increased whole-cell currents and facilitated current activation (hyperpolarized shift). The A713T variant also resulted in slower current decay. 3D modeling predicts conformational changes favoring channel opening for A713T and V1396M.
Significance: Our findings suggest that both gain-of-function and loss-of-function CACNA1A mutations are associated with similarly severe DEEs and that functional validation is required to clarify the underlying molecular mechanisms and to guide therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/epi.16316 | DOI Listing |
Mol Brain
November 2024
Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.
P/Q-type (Ca2.1) calcium channels mediate Ca influx essential for neuronal excitability and synaptic transmission. The CACNA1A gene, encoding the Ca2.
View Article and Find Full Text PDFCells
October 2024
Institut de Recherches Servier, Rue Francis Perrin, 91190 Gif-sur-Yvette, France.
Developmental and Epileptic Encephalopathies (DEEs) represent a clinically and genetically heterogeneous group of rare and severe epilepsies. DEEs commonly begin early in infancy with frequent seizures of various types associated with intellectual disability and leading to a neurodevelopmental delay or regression. Disease-causing genomic variants have been identified in numerous genes and are implicated in over 100 types of DEEs.
View Article and Find Full Text PDFJ Clin Neurol
November 2024
Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, Korea.
Curr Neurol Neurosci Rep
December 2024
Department of Neurology, Vivekananda Institute of Medical Science, Kolkata, West Bengal, India.
Headache
September 2024
Neurology Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
Background: Familial hemiplegic migraine (FHM) is a rare subtype of migraine with aura. Variants in calcium voltage-gated channel subunit alpha1 A (CACNA1A), ATPase Na+/K+ transporting subunit alpha 2 (ATP1A2), and sodium voltage-gated channel alpha subunit 1 (SCN1A) genes have a well-established association with the development of FHM. Recent studies suggest that other genes may also have a significant role in the pathogenesis of FHM, including proline-rich transmembrane protein 2 (PRRT2).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!