It was reported that apoptosis of Schwann cells could increase in the diabetic rats. The studies showed that taurine inhibited apoptosis in a variety of cells. However, there were few reports on studying the protection of taurine against apoptosis of Schwann cells induced by high glucose (HG) and the underlying mechanism. In our study, the cells were divided into five groups: Control: the normal medium; HG group: 50 mM high glucose; T1: 50 mM high glucose+Taurine (10 mM) group; T2: 50 mM high glucose+Taurine (20 mM) group; T3: 50 mM high glucose+Taurine (40 mM) group. We used MTT and Tunel assays to measure the cell viability and apoptosis, respectively. Then, we also used western blotting to detect the protein levels of apoptosis-related protein. The results demonstrate that taurine promoted cell viability and decreased apoptosis in RSC96 cells exposed to HG. Furthermore, taurine markedly improved imbalance of Bax and Bcl-2, inhibited the translocation of Cytochrome C (Cyt C) from mitochondria to cytosol and reduced caspase-3 activity in HG-induced RSC96 cells. Our results indicate that taurine protect against apoptosis of Schwann cells induced by HG via inhibiting mitochondria-dependent caspase-3 pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-981-13-8023-5_68 | DOI Listing |
Neurochem Res
January 2025
Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
Alzheimer's disease (AD) is a central nervous system degenerative disease with a stealthy onset and a progressive course characterized by memory loss, cognitive dysfunction, and abnormal psychological and behavioral symptoms. However, the pathogenesis of AD remains elusive. An increasing number of studies have shown that oligodendrocyte progenitor cells (OPCs) and oligodendroglial lineage cells (OLGs), especially OPCs and mature oligodendrocytes (OLGs), which are derived from OPCs, play important roles in the pathogenesis of AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
Background: Recent studies suggest genome-wide-association-studies (GWAS) loci confer their effects on microglia in late-onset Alzheimer's disease (LOAD) brains. Relatively fewer studies have investigated the effects of other genome-wide significant loci (p<5e) using human neurons.
Method: GWAS itself cannot directly identify causal variant-(effector)gene-pairs as GWAS only reports the sentinel variant at a given locus.
Nat Commun
January 2025
Centre for Craniofacial and Regenerative Biology, King's College London, London, UK.
Renewal of the catecholamine-secreting chromaffin cell population of the adrenal medulla is necessary for physiological homeostasis throughout life. Definitive evidence for the presence or absence of an adrenomedullary stem cell has been enigmatic. In this work, we demonstrate that a subset of sustentacular cells endowed with a support role, are in fact adrenomedullary stem cells.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
Spinal cord injury (SCI) leads to permanent motor and sensory loss that is exacerbated by intraspinal inflammation and persists months to years after injury. After SCI, monocyte-derived macrophages (MDMs) infiltrate the lesion to aid in myelin-rich debris clearance. During debris clearance, MDMs adopt a proinflammatory phenotype that exacerbates neurodegeneration and hinders recovery.
View Article and Find Full Text PDFNeurorehabil Neural Repair
January 2025
Medical School of Nantong University, Nantong, Jiangsu, P.R. China.
Background: The peripheral nervous system (PNS) exhibits remarkable regenerative capability after injury. PNS regeneration relies on neurons themselves as well as a variety of other cell types, including Schwann cells, immune cells, and non-neuronal cells.
Objectives: This paper focuses on summarizing the critical roles of immune cells (SCs) in the injury and repair processes of the PNS.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!