Abnormal regulation and expression of microRNAs (miRNAs) has been documented in various diseases including cancer. The miRNA let-7 (MIRLET7) family controls developmental timing and differentiation. Let-7 loss contributes to carcinogenesis via an increase in its target oncogenes and stemness factors. Let-7 targets include genes regulating the cell cycle, cell signaling, and maintenance of differentiation. It is categorized as a tumor suppressor because it reduces cancer aggressiveness, chemoresistance, and radioresistance. However, in rare situations let-7 acts as an oncogene, increasing cancer migration, invasion, chemoresistance, and expression of genes associated with progression and metastasis. Here, we review let-7 function as tumor suppressor and oncogene, considering let-7 as a potential diagnostic and prognostic marker, and a therapeutic target for cancer treatment. We explain the complex regulation and function of different let-7 family members, pointing to abnormal processes involved in carcinogenesis. Let-7 is a promising option to complement conventional cancer therapy, but requires a tumor specific delivery method to avoid toxicity. While let-7 therapy is not yet established, we make the case that assessing its tumor presence is crucial when choosing therapy. Clinical data demonstrate that let-7 can be used as a biomarker for rational precision medicine decisions, resulting in improved patient survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715759 | PMC |
http://dx.doi.org/10.1186/s40169-019-0240-y | DOI Listing |
Temporal regulation of gene expression is required for developmental transitions, including differentiation, proliferation, and morphogenesis. In the nematode , heterochronic microRNAs (miRNAs) regulate the temporal expression of genes that promote animal development. The heterochronic miRNAs lin-4 and let-7 are required during different stages of larval development and are associated with the miRNA-specific Argonaute ALG-1.
View Article and Find Full Text PDFCurr Protein Pept Sci
January 2025
Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia,010050, China.
Background: Gastric cancer has become one of the major diseases threatening human health. This study aimed to investigate the mechanism of an anticancer bioactive peptide (ACBP) combined with oxaliplatin (OXA) on MKN-45, SGC7901, and NCI-N87 differentiated human gastric cancer cells and GES-1 immortalized human gastric mucosal epithelial cells. The therapeutic effect and action mechanism of short-term intermittent ACBP combined with OXA on nude mice with human gastric cancer were also investigated.
View Article and Find Full Text PDFBiomolecules
December 2024
Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan.
The efficacy of statins as anti-cancer drugs has been demonstrated in several malignancies but has been poorly investigated in hematological malignancies (HM). By studying its effect on oncogenic miRNAs, we investigated the effect of statin therapy on HM patients. The data were used to identify enriched pathways that were altered due to statin treatment.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of General Surgery, The Second Clinical Medical School, The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, 730000, China.
Background: Tumor-associated macrophages (TAMs), particularly M2-polarized TAMs, are significant contributors to tumor progression, immune evasion, and therapy resistance in gastric cancer (GC). Despite efforts to target TAM recruitment or depletion, clinical efficacy remains limited. Consequently, the identification of targets that specifically inhibit or reprogram M2-polarized TAMs presents a promising therapeutic strategy.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Drug Prohibition and Public Security, Criminal Investigation Police University of China, Shenyang, 110035, China.
Methamphetamine use disorder has emerged as a significant public health concern globally. This study endeavors to elucidate the alterations in expression changes of miRNAs in the plasma of methamphetamine use disorder and elucidate the alterations in miRNA expression in the plasma of individuals with methamphetamine use disorder and investigate the relationship between these differentially expressed miRNAs and the disorder itself, cravings for methamphetamine, and associated mental disorders. Furthermore, the study seeks to clarify the expression of downstream target molecules of specific miRNAs in the plasma of methamphetamine use disorder, assess the diagnostic utility of these miRNAs and their target molecules, explore their potential as biomarkers, and identify potential targets for the diagnosis and treatment of methamphetamine use disorder.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!