Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper includes the first transmission electron microscopical (TEM) study of the tegument of a member of the basal digenean family Aporocotylidae. Scanning electron microscopical investigations of the fish blood fluke Aporocotyle simplex show that each boss on the lateral body surface bears 12-15 simple, uniform spines which extend from 0.5-2.7 μm above the surface of the boss. TEM observations revealed that these spines reach deep beneath the distal cytoplasm of the tegument for much of their length (9-12 μm) and are surrounded by a complex of diagonal muscles in each boss. This is the first record of any digenean with so-called 'sunken' spines. The results suggest that aporocotylid spines arise from within the sarcoplasm of the boss diagonal muscles. The sunken cell bodies (perikarya) of the tegument are connected to the distal cytoplasm via ducts (specialised processes lined by microtubules); this in contrast to other digeneans studied, where they are connected via non-specialised cytoplasmic processes. Within the distal cytoplasm, the tegumental ducts of A. simplex are surrounded by invaginations of the basal membrane and release their cytoplasmic inclusions into the distal cytoplasm. These apparently unique morphological features of the tegument, especially the deep origin of the spines, may represent useful characteristics for understanding aporocotylid relationships, especially in view of the known variation in the spine patterns of aporocotylids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00436-019-06436-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!