Optoacoustic image segmentation based on signal domain analysis.

Photoacoustics

Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Neuherberg, Germany.

Published: December 2015

Efficient segmentation of optoacoustic images has importance in enhancing the diagnostic and quantification capacity of this modality. It may also aid in improving the tomographic reconstruction accuracy by accounting for heterogeneous optical and acoustic tissue properties. In particular, when imaging through complex biological tissues, the real acoustic properties often deviate considerably from the idealized assumptions of homogenous conditions, which may lead to significant image artifacts if not properly accounted for. Although several methods have been proposed aiming at estimating and accounting for the complex acoustic properties in the image domain, accurate delineation of structures is often hindered by low contrast of the images and other artifacts produced due to incomplete tomographic coverage and heuristic assignment of the tissue properties during the reconstruction process. In this letter, we propose instead a signal domain analysis approach that retrieves acoustic properties of the object to be reconstructed from characteristic features of the detected optoacoustic signals prior to image reconstruction. Performance of the proposed method is first tested in simulation and experiment using two-dimensional tissue-mimicking phantoms. Significant improvements in the segmentation abilities and overall reconstructed image quality are further showcased in experimental cross-sectional data acquired from a human finger.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713061PMC
http://dx.doi.org/10.1016/j.pacs.2015.11.002DOI Listing

Publication Analysis

Top Keywords

acoustic properties
12
signal domain
8
domain analysis
8
tissue properties
8
properties
5
optoacoustic image
4
image segmentation
4
segmentation based
4
based signal
4
analysis efficient
4

Similar Publications

Music can evoke powerful emotions in listeners. However, the role that instrumental music (music without any vocal part) plays in conveying extra-musical meaning, above and beyond emotions, is still a debated question. We conducted a study wherein participants (N = 121) listened to twenty 15-second-long excerpts of polyphonic instrumental soundtrack music and reported (i) perceived emotions (e.

View Article and Find Full Text PDF

In natural environments, most rocks possess internal fissures and are often exposed to diverse external loads arising from engineering activities and ground stress, among other factors. This study aims to explore the influence of different loading rates on the mechanical properties and acoustic emission (AE) characteristics of fissured rocks and to develop an intrinsic damage model. To achieve this, prefabricated fissured rock specimens that mimic natural rocks were prepared.

View Article and Find Full Text PDF

Shear Wave Elastography (SWE) is an imaging technique that detects shear waves generated by tissue excited by Acoustic Radiation Force (ARF), and characterizes the mechanical properties of soft tissue by analyzing the propagation velocity of shear wave. ARF induces a change in energy density through the nonlinear propagation of ultrasound waves, which drives the tissue to generate shear waves. However, the amplitude of shear waves generated by ARF is weak, and the shear waves are strongly attenuated in vivo.

View Article and Find Full Text PDF

Phytic Acid-Induced Gradient Hydrogels for Highly Sensitive and Broad Range Pressure Sensing.

Adv Mater

January 2025

Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.

Ionic conductive hydrogels have emerged as an excellent option for constructing dielectric layers of interfacial iontronic sensors. Among these, gradient ionic hydrogels, due to the intrinsic gradient elastic modulus, can achieve a wide range of pressure responses. However, the fabrication of gradient hydrogels with optimal mechanical and sensing properties remains a challenge.

View Article and Find Full Text PDF

Neural-electronic interfaces through delivering electroceuticals to lesions and modulating pathological endogenous electrical environments offer exciting opportunities to treat drug-refractory neurological disorders. Such an interface should ideally be compatible with the neural tissue and aggressive biofluid environment. Unfortunately, no interface specifically designed for the biofluid environments is available so far; instead, simply stacking an encapsulation layer on silicon-based substrates makes them susceptible to biofluid leakage, device malfunction, and foreign-body reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!