Optical coherence tomography (OCT) enables the non-invasive acquisition of high-resolution three-dimensional cross-sectional images at micrometer scale and is mainly used in the field of ophthalmology for diagnosis as well as monitoring of eye diseases. Also in other areas, such as dermatology, OCT is already well established. Due to its non-invasive nature, OCT is also employed for research studies involving animal models. Manual evaluation of OCT images of animal models is a challenging task due to the lack of imaging standards and the varying anatomy among models. In this paper, we present a deep learning algorithm for the automatic segmentation of several layers of mouse skin in OCT image data using a deep convolutional neural network (CNN). The architecture of our CNN is based on the U-net and is modified by densely connected convolutions. We compared our adapted CNN with our previous algorithm, a combination of a random forest classification and a graph-based refinement, and a baseline U-net. The results showed that, on average, our proposed CNN outperformed our previous algorithm and the baseline U-net. In addition, a reduction of outliers could be observed through the use of densely connected convolutions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6706029PMC
http://dx.doi.org/10.1364/BOE.10.003484DOI Listing

Publication Analysis

Top Keywords

mouse skin
8
optical coherence
8
coherence tomography
8
image data
8
data deep
8
deep convolutional
8
convolutional neural
8
animal models
8
densely connected
8
connected convolutions
8

Similar Publications

: Community-acquired methicillin-resistant (CA-MRSA) greatly complicates the treatment of skin and soft tissue infections (SSTI). It was previously found that subcutaneous (SQ) treatment with the mononuclear phagocyte (MP)-selective activator complements peptide-derived immunostimulant-02 (CPDI-02; formerly EP67) and increases prophylaxis of outbred CD-1 mice against SQ infection with CA-MRSA. Here, we determined if treatment with CPDI-02 also increases curative protection.

View Article and Find Full Text PDF

Skin wrinkles result from a myriad of multifaceted processes involving intrinsic and extrinsic aging. To combat this effect, plant stem cells offer a renewable and eco-friendly source for various industries, including cosmeceuticals. (SM), which contains the bioactive compound Rosmarinic acid (RA) and has been proposed for its anti-wrinkle effect.

View Article and Find Full Text PDF

Background/objective: Ultraviolet (UV) B radiation leads to DNA damage by generating cyclobutane pyrimidine dimers (CPDs). UVB-induced CPDs can also result in immune suppression, which is a major risk factor for non-melanoma skin cancer (NMSC). UVB-induced CPDs are repaired by nucleotide repair mechanisms (NER) mediated by xeroderma pigmentosum complementation group A (XPA).

View Article and Find Full Text PDF

Background: Lutein, a carotenoid, exhibits various biological activities such as maintaining the health of the eye, skin, heart, and bone. Recently, we found that lutein has dual roles in suppressing bone resorption and promoting bone formation. In this study, we examined the effects of lutein in a disuse-induced osteoporosis model using hindlimb-unloaded (HLU) mice.

View Article and Find Full Text PDF

Mesenchymal Stem Cell Extract Promotes Skin Wound Healing.

Int J Mol Sci

December 2024

Department of Oral Anatomy, Osaka Dental University, Osaka 573-1121, Japan.

Recently, it has been reported that mesenchymal stem cell (MSC)-derived humoral factors promote skin wound healing. As these humoral factors are transiently stored in cytoplasm, we collected them as part of the cell extracts from MSCs (MSC-ext). This study aimed to investigate the effects of MSC-ext on skin wound healing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!