Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: High-esterified pectin (HEP) is a prebiotic able to modulate gut microbiota, associated with health-promoting metabolic effects in glucose and lipid metabolism and adipostatic hormone sensitivity. Possible effects regulating adaptive thermogenesis and energy waste are poorly known. Therefore, we aimed to study how physiological supplementation with HEP is able to affect microbiota, energy metabolism and adaptive thermogenic capacity, and to contribute to the healthier phenotype promoted by HEP supplementation, as previously shown. We also attempted to decipher some of the mechanisms involved in the HEP effects, including in vitro experiments.
Subjects And Experimental Design: We used a model of metabolic malprogramming consisting of the progeny of rats with mild calorie restriction during pregnancy, both under control diet and an obesogenic (high-sucrose) diet, supplemented with HEP, combined with in vitro experiments in primary cultured brown and white adipocytes treated with the postbiotic acetate.
Results: Our main findings suggest that chronic HEP supplementation induces markers of brown and white adipose tissue thermogenic capacity, accompanied by a decrease in energy efficiency, and prevention of weight gain under an obesogenic diet. We also show that HEP promotes an increase in beneficial bacteria in the gut and peripheral levels of acetate. Moreover, in vitro acetate can improve adipokine production, and increase thermogenic capacity and browning in brown and white adipocytes, respectively, which could be part of the protection mechanism against excess weight gain observed in vivo.
Conclusion: HEP and acetate stand out as prebiotic/postbiotic active compounds able to modulate both brown-adipocyte metabolism and browning and protect against obesity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41366-019-0445-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!