A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fate of nanoparticles in the central nervous system after intrathecal injection in healthy mice. | LitMetric

Fate of nanoparticles in the central nervous system after intrathecal injection in healthy mice.

Sci Rep

Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA.

Published: August 2019

Cerebrospinal fluid (CSF) is produced in the cerebral ventricles and circulates within the subarachnoid space (SAS) of the brain and spinal cord, where it exchanges with interstitial fluid of the parenchyma. The access of CSF to the entire central nervous system (CNS) makes it an attractive medium for drug delivery. However, few intrathecal (IT) therapies have reached the clinic due, in part, to limited distribution and rapid clearance. Given the success of nanoparticle (NP) carriers in prolonging circulation and improving delivery of systemically administered agents, we sought to evaluate the distribution of IT injected NPs within the CNS. We administered fluorescent, 100 nm PEGylated-NPs into the cisterna magna of healthy mice and studied their distribution along the brain and spinal cord. Our data demonstrate that NPs are capable of distributing rapidly through the SAS along the entire neuraxis with reproducible, anatomically defined patterns of delivery. NPs were well retained within the leptomeninges for over 3 weeks, showing preference for ventral surfaces and minimal penetration into the CNS parenchyma. Clearance of NPs occurred across the cribriform plate into the nasal mucosa, with a small fraction of NPs localizing with nerve roots exiting the spinal column. Larger 10 µm particles were also capable of moving through the SAS but did not achieve as widespread distribution. These studies demonstrate the ability of NPs to achieve widespread delivery along the neuraxis and highlight IT administration as a potentially significant route of administration for delivery of nanomedicine to the subarachnoid space.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715675PMC
http://dx.doi.org/10.1038/s41598-019-49028-wDOI Listing

Publication Analysis

Top Keywords

central nervous
8
nervous system
8
healthy mice
8
subarachnoid space
8
brain spinal
8
spinal cord
8
achieve widespread
8
nps
6
delivery
5
fate nanoparticles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!