The cell-cell adhesion protein E-cadherin (CDH1) is a tumor suppressor that is required to maintain cell adhesion, cell polarity and cell survival signalling. Somatic mutations in CDH1 are common in diffuse gastric cancer (DGC) and lobular breast cancer (LBC). In addition, germline mutations in CDH1 predispose to the autosomal dominant cancer syndrome Hereditary Diffuse Gastric Cancer (HDGC). One approach to target cells with mutations in specific tumor suppressor genes is synthetic lethality. To identify novel synthetic lethal compounds for the treatment of cancers associated with E-cadherin loss, we have undertaken a high-throughput screening campaign of ~114,000 lead-like compounds on an isogenic pair of human mammary epithelial cell lines - with and without CDH1 expression. This unbiased approach identified 12 novel compounds that preferentially harmed E-cadherin-deficient cells. Validation of these compounds using both real-time and end-point viability assays identified two novel compounds with significant synthetic lethal activity, thereby demonstrating that E-cadherin loss creates druggable vulnerabilities within tumor cells. In summary, we have identified novel synthetic lethal compounds that may provide a new strategy for the prevention and treatment of both sporadic and hereditary LBC and DGC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715681 | PMC |
http://dx.doi.org/10.1038/s41598-019-48929-0 | DOI Listing |
Physiol Plant
January 2025
KWS SEMILLAS IBÉRICA S.L.U, Finca Las Monjas, Miranda, Murcia, Spain.
Stomatal abundance sets plants' potential for gas exchange, impacting photosynthesis and transpiration and, thus, plant survival and growth. Stomata originate from cell lineages initiated by asymmetric divisions of protodermal cells, producing meristemoids that develop into guard cell pairs. The transcription factors SPEECHLESS, MUTE, and FAMA are essential for stomatal lineage development, sequentially driving cell division and differentiation events.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
Hesperidin, a natural flavanone glycoside predominantly found in citrus fruits, has gained attention for its wide-ranging biological activities, including potential insecticidal properties. Culex pipiens, commonly known as the northern house mosquito, is a major vector of several human pathogens, such as the West Nile virus and filariasis, making it a key target in the fight against vector-borne diseases. In this study, we evaluated the larvicidal activity of Hesperidin against Culex pipiens larvae, assessing its potential as an alternative to chemical insecticides.
View Article and Find Full Text PDFJ Med Chem
January 2025
Medicinal Chemistry Department, Shanghai Haiyan Pharmaceutical Technology Co., Ltd., Pudong New Area, Shanghai 201203, China.
Synthetic lethality offers a robust strategy for discovering the next generation of precision medicine therapies tailored for molecularly defined patient populations. MAT2A inhibition is synthetically lethal in several cancers that exhibit a homozygous deletion of -methyl-5'-thioadenosine phosphorylase (MTAP). Herein, we report the identification of novel MAT2A inhibitors featuring a spiral ring to circumvent the C-N atropisomeric chirality utilizing structure-based drug design.
View Article and Find Full Text PDFNat Genet
January 2025
Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
Adv Exp Med Biol
January 2025
Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, UK.
E-cadherin is a transmembrane protein and central component of adherens junctions (AJs). The extracellular domain of E-cadherin forms homotypic interactions with E-cadherin on adjacent cells, facilitating the formation of cell-cell adhesions, known as AJs, between neighbouring cells. The intracellular domain of E-cadherin interacts with α-, β- and p120-catenins, linking the AJs to the actin cytoskeleton.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!