Cardiac contractility is enhanced by phosphorylation of myosin light chain 2 (MLC2) by cardiac-specific MLC kinase (cMLCK), located at the neck region of myosin heavy chain. In normal mouse and human hearts, the level of phosphorylation is maintained relatively constant, at around 30-40% of total MLC2, likely by well-balanced phosphorylation and phosphatase-dependent dephosphorylation. Overexpression of cMLCK promotes sarcomere organization, while the loss of cMLCK leads to cardiac atrophy in vitro and in vivo. In this study, we showed that cMLCK is predominantly expressed at the Z-disc with additional diffuse cytosolic expression in normal adult mouse and human hearts. cMLCK interacts with the Z-disc protein, α-actinin2, with a high-affinity kinetic value of 13.4 ± 0.1 nM through the N-terminus region of cMLCK unique to cardiac-isoform. cMLCK mutant deficient for interacting with α-actinin2 did not promote sarcomeric organization and reduced cardiomyocyte cell size. In contrast, a cMLCK kinase-deficient mutant showed effects similar to wild-type cMLCK on sarcomeric organization and cardiomyocyte cell size. Our results suggest that cMLCK plays a role in sarcomere organization, likely distinct from its role in phosphorylating MLC2, both of which will contribute to the enhancement of cardiac contractility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715661 | PMC |
http://dx.doi.org/10.1038/s41598-019-48884-w | DOI Listing |
Gene
January 2025
Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, Hefei, China. Electronic address:
Hyperlipidemia and myocardial apoptosis caused by myocardial ischemia are the main causes of high mortality rates in cardiovascular diseases. Previous studies have indicated that Krüppel-like factor 4 (KLF4) is involved in the induction of cardiac myocyte apoptosis under various stress conditions. In current study, we discovered that KLF4 also participates in palmitic acid (PA)-induced cardiac myocyte apoptosis.
View Article and Find Full Text PDFFood Chem Toxicol
September 2024
Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran. Electronic address:
Background: High doses of selenium are associated with heart disease prevalence in high-risk areas. Cardiac myosin light chain kinase (cMLCK) is an essential enzyme for normal function of heart tissue. Therefore, we studied the effect of high doses of selenium on the expression of cMLCK gene and its protein in normal heart tissue in rats.
View Article and Find Full Text PDFCirculation
June 2023
Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.).
Background: Cardiac-specific myosin light chain kinase (cMLCK), encoded by , regulates cardiac contractility through phosphorylation of ventricular myosin regulatory light chain. However, the pathophysiological and therapeutic implications of cMLCK in human heart failure remain unclear. We aimed to investigate whether cMLCK dysregulation causes cardiac dysfunction and whether the restoration of cMLCK could be a novel myotropic therapy for systolic heart failure.
View Article and Find Full Text PDFPhysiol Rep
April 2022
Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA.
Nearly 1 in every 100 children born have a congenital heart defect. Many of these defects primarily affect the right heart causing pressure overload of the right ventricle (RV). The RV maintains function by adapting to the increased pressure; however, many of these adaptations eventually lead to RV hypertrophy and failure.
View Article and Find Full Text PDFJ Vis Exp
June 2020
Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences.
Cardiac-specific myosin regulatory light chain kinase (cMLCK) regulates cardiac sarcomere structure and contractility by phosphorylating the ventricular isoform of the myosin regulatory light chain (MLC2v). MLC2v phosphorylation levels are significantly reduced in failing hearts, indicating the clinical importance of assessing the activity of cMLCK and the phosphorylation level of MLC2v to elucidate the pathogenesis of heart failure. This paper describes nonradioactive methods to assess both the activity of cMLCK and MLC2v phosphorylation levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!