Are estimations of radiomic image markers dispensable due to recent deep learning findings?

Eur Respir J

Dept of Radiology, University Hospital Giessen, Justus-Liebig University, Giessen, Germany

Published: August 2019

Download full-text PDF

Source
http://dx.doi.org/10.1183/13993003.01185-2019DOI Listing

Publication Analysis

Top Keywords

estimations radiomic
4
radiomic image
4
image markers
4
markers dispensable
4
dispensable deep
4
deep learning
4
learning findings?
4
estimations
1
image
1
markers
1

Similar Publications

Purpose: To systematically review the literature and perform a meta-analysis of PET radiomics for histologic subtype classification in non-small cell lung cancer (NSCLC).

Methods: PubMed, Embase, Scopus, and Web of Science databases were systematically searched in English on human subjects for studies on distinguishing adenocarcinoma (ADC) from squamous cell carcinoma (SCC) using PET radiomics published from inception until November 2024. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool and the Radiomics Quality Score (RQS) were utilized to assess the methodological quality of the included studies.

View Article and Find Full Text PDF

Objectives: To construct a prediction model based on deep learning (DL) and radiomics features of diffusion weighted imaging (DWI), and clinical variables for evaluating TP53 mutations in endometrial cancer (EC).

Methods: DWI and clinical data from 155 EC patients were included in this study, consisting of 80 in the training set, 35 in the test set, and 40 in the external validation set. Radiomics features, convolutional neural network-based DL features, and clinical variables were analyzed.

View Article and Find Full Text PDF

Objectives: To investigate how studies determine the sample size when developing radiomics prediction models for binary outcomes, and whether the sample size meets the estimates obtained by using established criteria.

Methods: We identified radiomics studies that were published from 01 January 2023 to 31 December 2023 in seven leading peer-reviewed radiological journals. We reviewed the sample size justification methods, and actual sample size used.

View Article and Find Full Text PDF

The most prevalent form of malignant tumors that originate in the brain are known as gliomas. In order to diagnose, treat, and identify risk factors, it is crucial to have precise and resilient segmentation of the tumors, along with an estimation of the patients' overall survival rate. Therefore, we have introduced a deep learning approach that employs a combination of MRI scans to accurately segment brain tumors and predict survival in patients with gliomas.

View Article and Find Full Text PDF

Purpose: We used knowledge discovery from radiomics of T2-weighted imaging (T2WI) and contrast-enhanced T1-weighted imaging (T1C) for assessing relapse risk in patients with high-grade meningiomas (HGMs).

Methods: 279 features were extracted from each ROI including 9 histogram features, 220 Gy-level co-occurrence matrix features, 20 Gy-level run-length matrix features, 5 auto-regressive model features, 20 wavelets transform features and 5 absolute gradient statistics features. The datasets were randomly divided into two groups, the training set (~ 70%) and the test set (~ 30%).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!